The Application of Machine Learning for Creating a Typology of Universities' Financial Models

This study presents an application of machine learning for creating a typology of Russian universities' financial models. Large-scale national initiatives aimed at enhancing human potential and academic excellence, such as Project 5-100, university-industry consortia, world class research cente...

Full description

Saved in:
Bibliographic Details
Main Authors: I. A. Khodachek (Author), D. V. Minaev (Author), A. V. Zinkovskaya (Author), E. B. Yablokov (Author)
Format: Book
Published: Moscow Polytechnic University, 2023-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b3ad2e5d7d6b4afc8b59be57c476b4c1
042 |a dc 
100 1 0 |a I. A. Khodachek  |e author 
700 1 0 |a D. V. Minaev  |e author 
700 1 0 |a A. V. Zinkovskaya  |e author 
700 1 0 |a E. B. Yablokov  |e author 
245 0 0 |a The Application of Machine Learning for Creating a Typology of Universities' Financial Models 
260 |b Moscow Polytechnic University,   |c 2023-11-01T00:00:00Z. 
500 |a 0869-3617 
500 |a 2072-0459 
500 |a 10.31992/0869-3617-2023-32-11-116-135 
520 |a This study presents an application of machine learning for creating a typology of Russian universities' financial models. Large-scale national initiatives aimed at enhancing human potential and academic excellence, such as Project 5-100, university-industry consortia, world class research center programs as well as the Priority-2030 program, require relevant financial and management accounting tools enabling appropriate analyses of universities' contribution to national scientific policy implementation. However, when conventional financial analysis and audit techniques are adopted from the corporate sector, they may prove to be irrelevant for assessing the societal impacts of universities. Existing impact study methods, such as those applied in the Russell Group universities' impact assessment, are expensive and time consuming, so promising machine learning techniques and existing open data from government information systems were used in this study to assess universities' financial models. 
546 |a EN 
546 |a RU 
690 |a science and technology policy 
690 |a typology of universities 
690 |a machine learning 
690 |a Education 
690 |a L 
655 7 |a article  |2 local 
786 0 |n Высшее образование в России, Vol 32, Iss 11, Pp 116-135 (2023) 
787 0 |n https://vovr.elpub.ru/jour/article/view/4659 
787 0 |n https://doaj.org/toc/0869-3617 
787 0 |n https://doaj.org/toc/2072-0459 
856 4 1 |u https://doaj.org/article/b3ad2e5d7d6b4afc8b59be57c476b4c1  |z Connect to this object online.