PENGEMBANGAN APLIKASI PENERJEMAH BAHASA ISYARAT INDONESIA (BISINDO) MENGGUNAKAN METODE LONG-SHORT TERM MEMORY

The Indonesian Sign Language Translator (BISINDO) application is intended for individuals who are deaf and mute assist them in communicating with normal people. Due to the limitations of technology to assist individuals who are deaf and mute, the Indonesian Sign Language Translator application was d...

Full description

Saved in:
Bibliographic Details
Main Authors: Siti Nur (Author), Aghisna Nur Assyifa (Author), Habilah Nurjannah (Author)
Format: Book
Published: STKIP PGRI Situbondo, 2023-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b8277856f6c147738c4c050bda8d6ee0
042 |a dc 
100 1 0 |a Siti Nur  |e author 
700 1 0 |a Aghisna Nur Assyifa  |e author 
700 1 0 |a Habilah Nurjannah  |e author 
245 0 0 |a PENGEMBANGAN APLIKASI PENERJEMAH BAHASA ISYARAT INDONESIA (BISINDO) MENGGUNAKAN METODE LONG-SHORT TERM MEMORY 
260 |b STKIP PGRI Situbondo,   |c 2023-07-01T00:00:00Z. 
500 |a 10.47668/edusaintek.v11i1.898 
500 |a 1858-005X 
500 |a 2655-3392 
520 |a The Indonesian Sign Language Translator (BISINDO) application is intended for individuals who are deaf and mute assist them in communicating with normal people. Due to the limitations of technology to assist individuals who are deaf and mute, the Indonesian Sign Language Translator application was developed. Additionally, it is hoped that this application will enable individuals who are deaf and mute to learn Indonesian Sign Language in real-time. LSTM generally consists of a cell, input, gate, and forget gate. LSTM is highly suitable for classifying, processing, and making predictions based on time series data. In this research, hand landmark recognition is used as a medium to store finger gestures from user inputs, which will then be saved in the form of coordinate points and stored in a file in csv format. Subsequently, this file will be trained and called back to determine the output. 
546 |a EN 
546 |a ID 
690 |a Hand Gesture Recognition, Deep Learning, LSTM 
690 |a Education 
690 |a L 
690 |a Technology 
690 |a T 
655 7 |a article  |2 local 
786 0 |n Edusaintek, Vol 11, Iss 1 (2023) 
787 0 |n https://journalstkippgrisitubondo.ac.id/index.php/EDUSAINTEK/article/view/898 
787 0 |n https://doaj.org/toc/1858-005X 
787 0 |n https://doaj.org/toc/2655-3392 
856 4 1 |u https://doaj.org/article/b8277856f6c147738c4c050bda8d6ee0  |z Connect to this object online.