Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations

Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Juan Luis Pacheco-Garcia (Author), Dmitry S. Loginov (Author), Ernesto Anoz-Carbonell (Author), Pavla Vankova (Author), Rogelio Palomino-Morales (Author), Eduardo Salido (Author), Petr Man (Author), Milagros Medina (Author), Athi N. Naganathan (Author), Angel L. Pey (Author)
Format: Book
Published: MDPI AG, 2022-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b95e67435a8a43c0af026892a8aef1b0
042 |a dc 
100 1 0 |a Juan Luis Pacheco-Garcia  |e author 
700 1 0 |a Dmitry S. Loginov  |e author 
700 1 0 |a Ernesto Anoz-Carbonell  |e author 
700 1 0 |a Pavla Vankova  |e author 
700 1 0 |a Rogelio Palomino-Morales  |e author 
700 1 0 |a Eduardo Salido  |e author 
700 1 0 |a Petr Man  |e author 
700 1 0 |a Milagros Medina  |e author 
700 1 0 |a Athi N. Naganathan  |e author 
700 1 0 |a Angel L. Pey  |e author 
245 0 0 |a Allosteric Communication in the Multifunctional and Redox NQO1 Protein Studied by Cavity-Making Mutations 
260 |b MDPI AG,   |c 2022-06-01T00:00:00Z. 
500 |a 10.3390/antiox11061110 
500 |a 2076-3921 
520 |a Allosterism is a common phenomenon in protein biochemistry that allows rapid regulation of protein stability; dynamics and function. However, the mechanisms by which allosterism occurs (by mutations or post-translational modifications (PTMs)) may be complex, particularly due to long-range propagation of the perturbation across protein structures. In this work, we have investigated allosteric communication in the multifunctional, cancer-related and antioxidant protein NQO1 by mutating several fully buried leucine residues (L7, L10 and L30) to smaller residues (V, A and G) at sites in the N-terminal domain. In almost all cases, mutated residues were not close to the FAD or the active site. Mutations L→G strongly compromised conformational stability and solubility, and L30A and L30V also notably decreased solubility. The mutation L10A, closer to the FAD binding site, severely decreased FAD binding affinity (≈20 fold vs. WT) through long-range and context-dependent effects. Using a combination of experimental and computational analyses, we show that most of the effects are found in the apo state of the protein, in contrast to other common polymorphisms and PTMs previously characterized in NQO1. The integrated study presented here is a first step towards a detailed structural-functional mapping of the mutational landscape of NQO1, a multifunctional and redox signaling protein of high biomedical relevance. 
546 |a EN 
690 |a antioxidant defense 
690 |a flavoprotein 
690 |a FAD binding 
690 |a structural perturbation 
690 |a protein core 
690 |a allosterism 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 11, Iss 6, p 1110 (2022) 
787 0 |n https://www.mdpi.com/2076-3921/11/6/1110 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/b95e67435a8a43c0af026892a8aef1b0  |z Connect to this object online.