Improving Drug-Drug Interaction Extraction with Gaussian Noise

Drug-Drug Interactions (DDIs) produce essential and valuable insights for healthcare professionals, since they provide data on the impact of concurrent administration of medications to patients during therapy. In that sense, some relevant works, related to the DDIExtraction2013 Challenge, are availa...

Full description

Saved in:
Bibliographic Details
Main Authors: Marco Molina (Author), Cristina Jiménez (Author), Carlos Montenegro (Author)
Format: Book
Published: MDPI AG, 2023-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_bcae4a44b6004a69a690d8b2b7b21c25
042 |a dc 
100 1 0 |a Marco Molina  |e author 
700 1 0 |a Cristina Jiménez  |e author 
700 1 0 |a Carlos Montenegro  |e author 
245 0 0 |a Improving Drug-Drug Interaction Extraction with Gaussian Noise 
260 |b MDPI AG,   |c 2023-06-01T00:00:00Z. 
500 |a 10.3390/pharmaceutics15071823 
500 |a 1999-4923 
520 |a Drug-Drug Interactions (DDIs) produce essential and valuable insights for healthcare professionals, since they provide data on the impact of concurrent administration of medications to patients during therapy. In that sense, some relevant works, related to the DDIExtraction2013 Challenge, are available in the current technical literature. This study aims to improve previous results, using two models, where a Gaussian noise layer is added to achieve better DDI relationship extraction. (1) A Piecewise Convolutional Neural Network (PW-CNN) model is used to capture relationships among pharmacological entities described in biomedical databases. Additionally, the model incorporates multichannel words to enrich a person's vocabulary and reduce unfamiliar words. (2) The model uses the pre-trained BERT language model to classify relationships, while also integrating data from the target entities. After identifying the target entities, the model transfers the relevant information through the pre-trained architecture and integrates the encoded data for both entities. The results of the experiment show an improved performance, with respect to previous models. 
546 |a EN 
690 |a drug-drug interaction 
690 |a deep learning 
690 |a BioBERT 
690 |a relation extraction 
690 |a DDIExtraction2013 challenge 
690 |a Pharmacy and materia medica 
690 |a RS1-441 
655 7 |a article  |2 local 
786 0 |n Pharmaceutics, Vol 15, Iss 7, p 1823 (2023) 
787 0 |n https://www.mdpi.com/1999-4923/15/7/1823 
787 0 |n https://doaj.org/toc/1999-4923 
856 4 1 |u https://doaj.org/article/bcae4a44b6004a69a690d8b2b7b21c25  |z Connect to this object online.