Application of decision analytical models to diabetes in low- and middle-income countries: a systematic review

Abstract Background Decision analytical models (DAMs) are used to develop an evidence base for impact and health economic evaluations, including evaluating interventions to improve diabetes care and health services-an increasingly important area in low- and middle-income countries (LMICs), where the...

Full description

Saved in:
Bibliographic Details
Main Authors: Tagoe Eunice Twumwaa (Author), Nonvignon Justice (Author), van Der Meer Robert (Author), Megiddo Itamar (Author)
Format: Book
Published: BMC, 2022-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_bcafaf9ca09d4285b823be9c9a2f78c2
042 |a dc 
100 1 0 |a Tagoe Eunice Twumwaa  |e author 
700 1 0 |a Nonvignon Justice  |e author 
700 1 0 |a van Der Meer Robert  |e author 
700 1 0 |a Megiddo Itamar  |e author 
245 0 0 |a Application of decision analytical models to diabetes in low- and middle-income countries: a systematic review 
260 |b BMC,   |c 2022-11-01T00:00:00Z. 
500 |a 10.1186/s12913-022-08820-7 
500 |a 1472-6963 
520 |a Abstract Background Decision analytical models (DAMs) are used to develop an evidence base for impact and health economic evaluations, including evaluating interventions to improve diabetes care and health services-an increasingly important area in low- and middle-income countries (LMICs), where the disease burden is high, health systems are weak, and resources are constrained. This study examines how DAMs-in particular, Markov, system dynamic, agent-based, discrete event simulation, and hybrid models-have been applied to investigate non-pharmacological population-based (NP) interventions and how to advance their adoption in diabetes research in LMICs. Methods We systematically searched peer-reviewed articles published in English from inception to 8th August 2022 in PubMed, Cochrane, and the reference list of reviewed articles. Articles were summarised and appraised based on publication details, model design and processes, modelled interventions, and model limitations using the Health Economic Evaluation Reporting Standards (CHEERs) checklist. Results Twenty-three articles were fully screened, and 17 met the inclusion criteria of this qualitative review. The majority of the included studies were Markov cohort (7, 41%) and microsimulation models (7, 41%) simulating non-pharmacological population-based diabetes interventions among Asian sub-populations (9, 53%). Eleven (65%) of the reviewed studies evaluated the cost-effectiveness of interventions, reporting the evaluation perspective and the time horizon used to track cost and effect. Few studies (6,35%) reported how they validated models against local data. Conclusions Although DAMs have been increasingly applied in LMICs to evaluate interventions to control diabetes, there is a need to advance the use of DAMs to evaluate NP diabetes policy interventions in LMICs, particularly DAMs that use local research data. Moreover, the reporting of input data, calibration and validation that underlies DAMs of diabetes in LMICs needs to be more transparent and credible. 
546 |a EN 
690 |a Decision analytical modelling 
690 |a Diabetes 
690 |a Economic evaluation 
690 |a Simulation model 
690 |a Cost-effectiveness 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n BMC Health Services Research, Vol 22, Iss 1, Pp 1-10 (2022) 
787 0 |n https://doi.org/10.1186/s12913-022-08820-7 
787 0 |n https://doaj.org/toc/1472-6963 
856 4 1 |u https://doaj.org/article/bcafaf9ca09d4285b823be9c9a2f78c2  |z Connect to this object online.