Multi-depot dispatch deployment analysis on classifying preparedness phase for flood-prone coastal demography in Sarawak

Multi-Depot VRP (MDVRP) is a metaheuristic approach with concurrent vehicle rendezvous across various depots within a demanded regulation, where the task assignment would eventually end up at the same initial depot. A review of the relief commodities distribution patterns among flood-prone areas in...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Farid Morsidi (Author)
פורמט: ספר
יצא לאור: Pejabat Karang Mengarang UPSI, 2022-12-01T00:00:00Z.
נושאים:
גישה מקוונת:Connect to this object online.
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_bd42636879c64cb6ac03063f152fa94e
042 |a dc 
100 1 0 |a Farid Morsidi  |e author 
245 0 0 |a Multi-depot dispatch deployment analysis on classifying preparedness phase for flood-prone coastal demography in Sarawak 
260 |b Pejabat Karang Mengarang UPSI,   |c 2022-12-01T00:00:00Z. 
500 |a 2289-7844 
500 |a 0127-9750 
500 |a 10.37134/jictie.vol9.2.13.2022 
520 |a Multi-Depot VRP (MDVRP) is a metaheuristic approach with concurrent vehicle rendezvous across various depots within a demanded regulation, where the task assignment would eventually end up at the same initial depot. A review of the relief commodities distribution patterns among flood-prone areas in the underlying layouts of Sarawak residential areas has been conducted in retrospect and in light of common real-world routing problems.  The purpose of this research is to demonstrate the benefits of multi-path route selection in task distribution to cater to simultaneous demands for adhering to strict constraint settings, including load dispatch dynamism and deployed vehicle quantities. Shortest path algorithms are improvised as an alternative to select the most optimum traveled routes during relief commodity distribution. This is done by determining critical allocation nodes, where solution steps are optimized using a genetic algorithm with predefined parameters.  The experimental output displays the strong correlation between the number of prioritized customers and assigned depots to optimize the route complexity and natural affluence on generated final solution cost.  The approach is seen as viable for further addressing problem-specific instances in vehicle routing problems such as adjusting parameter settings to generate rapid solution steps, including pathfinding shortest coverage distance and sorting out trade-offs between space covered and the time limitations of task distribution efforts. 
546 |a EN 
690 |a vehicle routing problem 
690 |a mdvrp 
690 |a genetic computation 
690 |a optimization 
690 |a routing complexity 
690 |a Education 
690 |a L 
655 7 |a article  |2 local 
786 0 |n Journal of ICT in Education, Vol 9, Iss 2, Pp 175-190 (2022) 
787 0 |n https://ejournal.upsi.edu.my/index.php/JICTIE/article/view/7325 
787 0 |n https://doaj.org/toc/2289-7844 
787 0 |n https://doaj.org/toc/0127-9750 
856 4 1 |u https://doaj.org/article/bd42636879c64cb6ac03063f152fa94e  |z Connect to this object online.