Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1

Background. Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK) pathway. Liver kinase-β1...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Rowart (Author), P. Erpicum (Author), J.-M. Krzesinski (Author), M. Sebbagh (Author), F. Jouret (Author)
Format: Book
Published: Hindawi Limited, 2017-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_bd7e292731b24d50aa14e77a78f3cc0c
042 |a dc 
100 1 0 |a P. Rowart  |e author 
700 1 0 |a P. Erpicum  |e author 
700 1 0 |a J.-M. Krzesinski  |e author 
700 1 0 |a M. Sebbagh  |e author 
700 1 0 |a F. Jouret  |e author 
245 0 0 |a Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1 
260 |b Hindawi Limited,   |c 2017-01-01T00:00:00Z. 
500 |a 1687-966X 
500 |a 1687-9678 
500 |a 10.1155/2017/9717353 
520 |a Background. Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK) pathway. Liver kinase-β1 (LKB1) and Ca2+-calmodulin-dependent protein kinase kinase (CaMKK) represent the main kinases that activate AMPK. Methods. The in vitro Ca2+ switch from 5 μM to 1.8 mM was performed using epithelial Madin-Darby canine kidney (MDCK) cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted using MDCK stably expressing short-hairpin-RNA (shRNA) against LKB1 or luciferase (LUC, as controls). Compound STO-609 (50 μM) was used as CaMKK inhibitor. Results. Following Ca2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between LKB1-shRNA and Luc-shRNA MDCK following Ca2+ switch. Conversely, incubation with STO-609 prior to Ca2+ switch prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK activation and accelerated TJ-associated distribution of ZO-1 post Ca2+ switch in comparison to regular medium. Conclusions. MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1. 
546 |a EN 
690 |a Internal medicine 
690 |a RC31-1245 
655 7 |a article  |2 local 
786 0 |n Stem Cells International, Vol 2017 (2017) 
787 0 |n http://dx.doi.org/10.1155/2017/9717353 
787 0 |n https://doaj.org/toc/1687-966X 
787 0 |n https://doaj.org/toc/1687-9678 
856 4 1 |u https://doaj.org/article/bd7e292731b24d50aa14e77a78f3cc0c  |z Connect to this object online.