A Patients-Based Statistical Model of Radiotherapy Dose Distribution in Nasopharyngeal Cancer

Purpose: To develop a patients-based statistical model of dose distribution among patients with nasopharyngeal cancer (NPC). Methods and Materials: The dose distributions of 75 patients with NPC were acquired and preprocessed to generate a dose-template library. Subsequently, the dominant modes of d...

Full description

Saved in:
Bibliographic Details
Main Authors: Gang Liu (Author), Jing Yang (Author), Xin Nie (Author), Xiaohui Zhu (Author), Xiaoqiang Li (Author), Jun zhou (Author), Peyman Kabolizadeh (Author), Qin Li (Author), Hong Quan (Author), Xuanfeng Ding (Author)
Format: Book
Published: SAGE Publishing, 2019-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: To develop a patients-based statistical model of dose distribution among patients with nasopharyngeal cancer (NPC). Methods and Materials: The dose distributions of 75 patients with NPC were acquired and preprocessed to generate a dose-template library. Subsequently, the dominant modes of dose distribution were extracted using principal component analysis (PCA). Leave-one-out cross-validation (LOOCV) was performed for evaluation. Residual reconstruction errors between the doses reconstructed using different dominating eigenvectors and the planned dose distribution were calculated to investigate the convergence characteristics. Three-dimensional Gamma analysis was performed to investigate the accuracy of dose reconstruction. Results: The first 29 components contained 90% of the variance in dose distribution, and 45 components accounted for more than 95% of the variance on average. The residual error of the LOOCV model for the cumulative sum of components over all patients decreased from 8.16 to 4.79 Gy when 1 to 74 components were included in the LOOCV model. The 3-dimensional Gamma analysis results implied that the PCA model was capable of dose distribution reconstruction, and the accuracy was especially satisfactory in the high-dose area. Conclusions: A PCA-based model of dose distribution variations in patients with NPC was developed, and its accuracy was determined. This model could serve as a predictor of 3-dimensional dose distribution.
Item Description:1559-3258
10.1177/1559325819892359