SleepFC: Feature Pyramid and Cross-Scale Context Learning for Sleep Staging
Automated sleep staging is essential to assess sleep quality and treat sleep disorders, so the issue of electroencephalography (EEG)-based sleep staging has gained extensive research interests. However, the following difficulties exist in this issue: 1) how to effectively learn the intrinsic feature...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book |
Published: |
IEEE,
2024-01-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Automated sleep staging is essential to assess sleep quality and treat sleep disorders, so the issue of electroencephalography (EEG)-based sleep staging has gained extensive research interests. However, the following difficulties exist in this issue: 1) how to effectively learn the intrinsic features of salient waves from single-channel EEG signals; 2) how to learn and capture the useful information of sleep stage transition rules; 3) how to address the class imbalance problem of sleep stages. To handle these problems in sleep staging, we propose a novel method named SleepFC. This method comprises convolutional feature pyramid network (CFPN), cross-scale temporal context learning (CSTCL), and class adaptive fine-tuning loss function (CAFTLF) based classification network. CFPN learns the multi-scale features from salient waves of EEG signals. CSTCL extracts the informative multi-scale transition rules between sleep stages. CAFTLF-based classification network handles the class imbalance problem. Extensive experiments on three public benchmark datasets demonstrate the superiority of SleepFC over the state-of-the-art approaches. Particularly, SleepFC has a significant performance advantage in recognizing the N1 sleep stage, which is challenging to distinguish. |
---|---|
Item Description: | 1534-4320 1558-0210 10.1109/TNSRE.2024.3406383 |