Automated healthcare-associated infection surveillance using an artificial intelligence algorithm

Summary: Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer percep...

Full description

Saved in:
Bibliographic Details
Main Authors: R.P. dos Santos (Author), D. Silva (Author), A. Menezes (Author), S. Lukasewicz (Author), C.H. Dalmora (Author), O. Carvalho (Author), J. Giacomazzi (Author), N. Golin (Author), R. Pozza (Author), T.A. Vaz (Author)
Format: Book
Published: Elsevier, 2021-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c0c004c5d2b44be2ac2175f7f07e1f6c
042 |a dc 
100 1 0 |a R.P. dos Santos  |e author 
700 1 0 |a D. Silva  |e author 
700 1 0 |a A. Menezes  |e author 
700 1 0 |a S. Lukasewicz  |e author 
700 1 0 |a C.H. Dalmora  |e author 
700 1 0 |a O. Carvalho  |e author 
700 1 0 |a J. Giacomazzi  |e author 
700 1 0 |a N. Golin  |e author 
700 1 0 |a R. Pozza  |e author 
700 1 0 |a T.A. Vaz  |e author 
245 0 0 |a Automated healthcare-associated infection surveillance using an artificial intelligence algorithm 
260 |b Elsevier,   |c 2021-09-01T00:00:00Z. 
500 |a 2590-0889 
500 |a 10.1016/j.infpip.2021.100167 
520 |a Summary: Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer perceptron neural network achieving an area under receiver operating curve (AUROC) of 90.27%; specificity of 78.86%; sensitivity of 88.57%. Respiratory infections had the best results (AUROC ≥93.47%). The AI algorithm could identify most HAIs. AI is a feasible method for HAI surveillance, has the potential to save time, promote accurate hospital-wide surveillance, and improve infection prevention performance. 
546 |a EN 
690 |a Infection surveillance 
690 |a Artificial intelligence 
690 |a Healthcare-associated infection 
690 |a Infectious and parasitic diseases 
690 |a RC109-216 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Infection Prevention in Practice, Vol 3, Iss 3, Pp 100167- (2021) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2590088921000561 
787 0 |n https://doaj.org/toc/2590-0889 
856 4 1 |u https://doaj.org/article/c0c004c5d2b44be2ac2175f7f07e1f6c  |z Connect to this object online.