In <i>Escherichia coli</i> Ammonia Inhibits Cytochrome <i>bo</i><sub>3</sub> But Activates Cytochrome <i>bd</i>-I
Interaction of two redox enzymes of <i>Escherichia coli</i>, cytochrome <i>bo</i><sub>3</sub> and cytochrome <i>bd</i>-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2020-12-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | doaj_c2d469722a884427be11ae152526387b | ||
042 | |a dc | ||
100 | 1 | 0 | |a Elena Forte |e author |
700 | 1 | 0 | |a Sergey A. Siletsky |e author |
700 | 1 | 0 | |a Vitaliy B. Borisov |e author |
245 | 0 | 0 | |a In <i>Escherichia coli</i> Ammonia Inhibits Cytochrome <i>bo</i><sub>3</sub> But Activates Cytochrome <i>bd</i>-I |
260 | |b MDPI AG, |c 2020-12-01T00:00:00Z. | ||
500 | |a 10.3390/antiox10010013 | ||
500 | |a 2076-3921 | ||
520 | |a Interaction of two redox enzymes of <i>Escherichia coli</i>, cytochrome <i>bo</i><sub>3</sub> and cytochrome <i>bd</i>-I, with ammonium sulfate/ammonia at pH 7.0 and 8.3 was studied using high-resolution respirometry and absorption spectroscopy. At pH 7.0, the oxygen reductase activity of none of the enzymes is affected by the ligand. At pH 8.3, cytochrome <i>bo</i><sub>3</sub> is inhibited by the ligand, with 40% maximum inhibition at 100 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. In contrast, the activity of cytochrome <i>bd</i>-I at pH 8.3 increases with increasing the ligand concentration, the largest increase (140%) is observed at 100 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. In both cases, the effector molecule is apparently not NH<sub>4</sub><sup>+</sup> but NH<sub>3</sub>. The ligand induces changes in absorption spectra of both oxidized cytochromes at pH 8.3. The magnitude of these changes increases as ammonia concentration is increased, yielding apparent dissociation constants <i>K</i><sub>d<i>app</i></sub> of 24.3 ± 2.7 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (4.9 ± 0.5 mM NH<sub>3</sub>) for the Soret region in cytochrome <i>bo</i><sub>3</sub>, and 35.9 ± 7.1 and 24.6 ± 12.4 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (7.2 ± 1.4 and 4.9 ± 2.5 mM NH<sub>3</sub>) for the Soret and visible regions, respectively, in cytochrome <i>bd</i>-I. Consistently, addition of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> to cells of the <i>E. coli</i> mutant containing cytochrome <i>bd</i>-I as the only terminal oxidase at pH 8.3 accelerates the O<sub>2</sub> consumption rate, the highest one (140%) being at 27 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. We discuss possible molecular mechanisms and physiological significance of modulation of the enzymatic activities by ammonia present at high concentration in the intestines, a niche occupied by <i>E. coli</i>. | ||
546 | |a EN | ||
690 | |a bacteria | ||
690 | |a redox enzymes | ||
690 | |a respiratory oxidases | ||
690 | |a ammonia | ||
690 | |a environmental stressor | ||
690 | |a Therapeutics. Pharmacology | ||
690 | |a RM1-950 | ||
655 | 7 | |a article |2 local | |
786 | 0 | |n Antioxidants, Vol 10, Iss 1, p 13 (2020) | |
787 | 0 | |n https://www.mdpi.com/2076-3921/10/1/13 | |
787 | 0 | |n https://doaj.org/toc/2076-3921 | |
856 | 4 | 1 | |u https://doaj.org/article/c2d469722a884427be11ae152526387b |z Connect to this object online. |