Mild Adverse Events of Sputnik V Vaccine in Russia: Social Media Content Analysis of Telegram via Deep Learning
BackgroundThere is a limited amount of data on the safety profile of the COVID-19 vector vaccine Gam-COVID-Vac (Sputnik V). Previous infodemiology studies showed that social media discourse could be analyzed to assess the most concerning adverse events (AE) caused by drugs. ObjectiveWe aimed to inve...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Book |
Published: |
JMIR Publications,
2021-11-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | doaj_c2d81755951f4b1dadcc123aeb24d46d | ||
042 | |a dc | ||
100 | 1 | 0 | |a Andrzej Jarynowski |e author |
700 | 1 | 0 | |a Alexander Semenov |e author |
700 | 1 | 0 | |a Mikołaj Kamiński |e author |
700 | 1 | 0 | |a Vitaly Belik |e author |
245 | 0 | 0 | |a Mild Adverse Events of Sputnik V Vaccine in Russia: Social Media Content Analysis of Telegram via Deep Learning |
260 | |b JMIR Publications, |c 2021-11-01T00:00:00Z. | ||
500 | |a 1438-8871 | ||
500 | |a 10.2196/30529 | ||
520 | |a BackgroundThere is a limited amount of data on the safety profile of the COVID-19 vector vaccine Gam-COVID-Vac (Sputnik V). Previous infodemiology studies showed that social media discourse could be analyzed to assess the most concerning adverse events (AE) caused by drugs. ObjectiveWe aimed to investigate mild AEs of Sputnik V based on a participatory trial conducted on Telegram in the Russian language. We compared AEs extracted from Telegram with other limited databases on Sputnik V and other COVID-19 vaccines. We explored symptom co-occurrence patterns and determined how counts of administered doses, age, gender, and sequence of shots could confound the reporting of AEs. MethodsWe collected a unique dataset consisting of 11,515 self-reported Sputnik V vaccine AEs posted on the Telegram group, and we utilized natural language processing methods to extract AEs. Specifically, we performed multilabel classifications using the deep neural language model Bidirectional Encoder Representations from Transformers (BERT) "DeepPavlov," which was pretrained on a Russian language corpus and applied to the Telegram messages. The resulting area under the curve score was 0.991. We chose symptom classes that represented the following AEs: fever, pain, chills, fatigue, nausea/vomiting, headache, insomnia, lymph node enlargement, erythema, pruritus, swelling, and diarrhea. ResultsTelegram users complained mostly about pain (5461/11,515, 47.43%), fever (5363/11,515, 46.57%), fatigue (3862/11,515, 33.54%), and headache (2855/11,515, 24.79%). Women reported more AEs than men (1.2-fold, P<.001). In addition, there were more AEs from the first dose than from the second dose (1.1-fold, P<.001), and the number of AEs decreased with age (β=.05 per year, P<.001). The results also showed that Sputnik V AEs were more similar to other vector vaccines (132 units) than with messenger RNA vaccines (241 units) according to the average Euclidean distance between the vectors of AE frequencies. Elderly Telegram users reported significantly more (5.6-fold on average) systemic AEs than their peers, according to the results of the phase 3 clinical trials published in The Lancet. However, the AEs reported in Telegram posts were consistent (Pearson correlation r=0.94, P=.02) with those reported in the Argentinian postmarketing AE registry. ConclusionsAfter the Sputnik V vaccination, Russian Telegram users reported mostly pain, fever, and fatigue. The Sputnik V AE profile was comparable with other vector COVID-19 vaccines. Discussion on social media could provide meaningful information about the AE profile of novel vaccines. | ||
546 | |a EN | ||
690 | |a Computer applications to medicine. Medical informatics | ||
690 | |a R858-859.7 | ||
690 | |a Public aspects of medicine | ||
690 | |a RA1-1270 | ||
655 | 7 | |a article |2 local | |
786 | 0 | |n Journal of Medical Internet Research, Vol 23, Iss 11, p e30529 (2021) | |
787 | 0 | |n https://www.jmir.org/2021/11/e30529 | |
787 | 0 | |n https://doaj.org/toc/1438-8871 | |
856 | 4 | 1 | |u https://doaj.org/article/c2d81755951f4b1dadcc123aeb24d46d |z Connect to this object online. |