DeepCIN: Attention-based cervical histology image classification with sequential feature modeling for pathologist-level accuracy

Background: Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has...

Full description

Saved in:
Bibliographic Details
Main Authors: Sudhir Sornapudi (Author), R Joe Stanley (Author), William V Stoecker (Author), Rodney Long (Author), Zhiyun Xue (Author), Rosemary Zuna (Author), Shellaine R Frazier (Author), Sameer Antani (Author)
Format: Book
Published: Elsevier, 2020-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c35d7c72f67a47c898bbb8a912bb132b
042 |a dc 
100 1 0 |a Sudhir Sornapudi  |e author 
700 1 0 |a R Joe Stanley  |e author 
700 1 0 |a William V Stoecker  |e author 
700 1 0 |a Rodney Long  |e author 
700 1 0 |a Zhiyun Xue  |e author 
700 1 0 |a Rosemary Zuna  |e author 
700 1 0 |a Shellaine R Frazier  |e author 
700 1 0 |a Sameer Antani  |e author 
245 0 0 |a DeepCIN: Attention-based cervical histology image classification with sequential feature modeling for pathologist-level accuracy 
260 |b Elsevier,   |c 2020-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 2153-3539 
500 |a 10.4103/jpi.jpi_50_20 
520 |a Background: Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has the potential for more accurate classification for CIN grades from normal to increasing grades of pre-malignancy: CIN1, CIN2, and CIN3. Methodology: Cervix disease is generally understood to progress from the bottom (basement membrane) to the top of the epithelium. To model this relationship of disease severity to spatial distribution of abnormalities, we propose a network pipeline, DeepCIN, to analyze high-resolution epithelium images (manually extracted from whole-slide images) hierarchically by focusing on localized vertical regions and fusing this local information for determining Normal/CIN classification. The pipeline contains two classifier networks: (1) a cross-sectional, vertical segment-level sequence generator is trained using weak supervision to generate feature sequences from the vertical segments to preserve the bottom-to-top feature relationships in the epithelium image data and (2) an attention-based fusion network image-level classifier predicting the final CIN grade by merging vertical segment sequences. Results: The model produces the CIN classification results and also determines the vertical segment contributions to CIN grade prediction. Conclusion: Experiments show that DeepCIN achieves pathologist-level CIN classification accuracy. 
546 |a EN 
690 |a attention networks 
690 |a cervical cancer 
690 |a cervical intraepithelial neoplasia 
690 |a classification 
690 |a convolutional neural networks 
690 |a digital pathology 
690 |a fusion-based classification 
690 |a histology 
690 |a recurrent neural networks 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 11, Iss 1, Pp 40-40 (2020) 
787 0 |n http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2020;volume=11;issue=1;spage=40;epage=40;aulast=Sornapudi 
787 0 |n https://doaj.org/toc/2153-3539 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/c35d7c72f67a47c898bbb8a912bb132b  |z Connect to this object online.