Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images

Background: Tumor programmed death-ligand 1 (PD-L1) status is useful in determining which patients may benefit from programmed death-1 (PD-1)/PD-L1 inhibitors. However, little is known about the association between PD-L1 status and tumor histopathological patterns. Using deep learning, we predicted...

Full description

Saved in:
Bibliographic Details
Main Authors: Lingdao Sha (Author), Boleslaw L Osinski (Author), Irvin Y Ho (Author), Timothy L Tan (Author), Caleb Willis (Author), Hannah Weiss (Author), Nike Beaubier (Author), Brett M Mahon (Author), Tim J Taxter (Author), Stephen S F Yip (Author)
Format: Book
Published: Elsevier, 2019-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Tumor programmed death-ligand 1 (PD-L1) status is useful in determining which patients may benefit from programmed death-1 (PD-1)/PD-L1 inhibitors. However, little is known about the association between PD-L1 status and tumor histopathological patterns. Using deep learning, we predicted PD-L1 status from hematoxylin and eosin (H and E) whole-slide images (WSIs) of nonsmall cell lung cancer (NSCLC) tumor samples. Materials and Methods: One hundred and thirty NSCLC patients were randomly assigned to training (n = 48) or test (n = 82) cohorts. A pair of H and E and PD-L1-immunostained WSIs was obtained for each patient. A pathologist annotated PD-L1 positive and negative tumor regions on the training samples using immunostained WSIs for reference. From the H and E WSIs, over 145,000 training tiles were generated and used to train a multi-field-of-view deep learning model with a residual neural network backbone. Results: The trained model accurately predicted tumor PD-L1 status on the held-out test cohort of H and E WSIs, which was balanced for PD-L1 status (area under the receiver operating characteristic curve [AUC] =0.80, P << 0.01). The model remained effective over a range of PD-L1 cutoff thresholds (AUC = 0.67-0.81, P ≤ 0.01) and when different proportions of the labels were randomly shuffled to simulate interpathologist disagreement (AUC = 0.63-0.77, P ≤ 0.03). Conclusions: A robust deep learning model was developed to predict tumor PD-L1 status from H and E WSIs in NSCLC. These results suggest that PD-L1 expression is correlated with the morphological features of the tumor microenvironment.
Item Description:2153-3539
2153-3539
10.4103/jpi.jpi_24_19