Detecting expert's eye using a multiple-kernel Relevance Vector Machine

Decoding mental states from the pattern of neural activity or overt behavior is an intensely pursued goal. Here we applied machine learning to detect expertise from the oculomotor behavior of novice and expert billiard players during free viewing of a filmed billiard match with no specific task, and...

Volledige beschrijving

Bewaard in:
Bibliografische gegevens
Hoofdauteurs: Giuseppe Boccignone (Auteur), Mario Ferraro (Auteur), Sofia Crespi (Auteur), Carlo Robino (Auteur), Claudio de'Sperati (Auteur)
Formaat: Boek
Gepubliceerd in: Bern Open Publishing, 2014-04-01T00:00:00Z.
Onderwerpen:
Online toegang:Connect to this object online.
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c5bbacecce0247e5a0d27f1f4afb68c8
042 |a dc 
100 1 0 |a Giuseppe Boccignone  |e author 
700 1 0 |a Mario Ferraro  |e author 
700 1 0 |a Sofia Crespi  |e author 
700 1 0 |a Carlo Robino  |e author 
700 1 0 |a Claudio de'Sperati  |e author 
245 0 0 |a Detecting expert's eye using a multiple-kernel Relevance Vector Machine 
260 |b Bern Open Publishing,   |c 2014-04-01T00:00:00Z. 
500 |a 10.16910/jemr.7.2.3 
500 |a 1995-8692 
520 |a Decoding mental states from the pattern of neural activity or overt behavior is an intensely pursued goal. Here we applied machine learning to detect expertise from the oculomotor behavior of novice and expert billiard players during free viewing of a filmed billiard match with no specific task, and in a dynamic trajectory prediction task involving ad-hoc, occluded billiard shots. We have adopted a ground framework for feature space fusion and a Bayesian sparse classifier, namely, a Relevance Vector Machine. By testing different combinations of simple oculomotor features (gaze shifts amplitude and direction, and fixation duration), we could classify on an individual basis which group - novice or expert - the observers belonged to with an accuracy of 82% and 87%, respectively for the match and the shots. These results provide evidence that, at least in the particular domain of billiard sport, a signature of expertise is hidden in very basic aspects of oculomotor behavior, and that expertise can be detected at the individual level both with ad-hoc testing conditions and under naturalistic conditions - and suitable data mining. Our procedure paves the way for the development of a test for the "expert's eye", and promotes the use of eye movements as an additional signal source in Brain-Computer-Interface (BCI) systems. 
546 |a EN 
690 |a eye movements 
690 |a expertise 
690 |a billiards 
690 |a mind reading 
690 |a machine learning 
690 |a feature fusion 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Journal of Eye Movement Research, Vol 7, Iss 2 (2014) 
787 0 |n https://bop.unibe.ch/JEMR/article/view/2376 
787 0 |n https://doaj.org/toc/1995-8692 
856 4 1 |u https://doaj.org/article/c5bbacecce0247e5a0d27f1f4afb68c8  |z Connect to this object online.