How does arch form and interproximal contact size affect the 3D displacements and rotations of teeth: a finite element analysis

ABSTRACT Objective: The objective of this study was to determine how arch form and interproximal contact size displace mandibular teeth subjected to an anterior component of force (ACF). Methods: Nine finite element models (FEM) of the mandibular arch were developed using Ansys® v. 16.0 software. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrea ÁLVAREZ (Author), Santiago Alberto CORREA (Author), Peter H. BUSCHANG (Author), Samuel I. ROLDÁN (Author)
Format: Book
Published: Dental Press Editora, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Objective: The objective of this study was to determine how arch form and interproximal contact size displace mandibular teeth subjected to an anterior component of force (ACF). Methods: Nine finite element models (FEM) of the mandibular arch were developed using Ansys® v. 16.0 software. They were designed to evaluate the effects of three arch forms (triangular, oval, and square) and three contact sizes (point-to-point, 1 mm diameter, and 2 mm diameter). All nine models were subjected to an ACF of 53.8 N (5486 gm). Three-dimensional tooth rotations and displacements of the mandibular teeth were evaluated, from the right first molar to the left first molar. Results: Arch form had a greater effect on tooth movements than contact size. Triangular arches and point-to-point contacts produced the greatest displacements and rotations of teeth. Oval arches with 2 mm wide interproximal contact points showed the greatest stability. The right first premolar showed the greatest displacements in all of the models. Conclusions: Arch form and contact size affect interproximal tooth stability. Teeth are least stable in narrow arches with point-to-point interproximal contacts, and most stable in wider arches with larger contacts.
Item Description:2177-6709
10.1590/2177-6709.28.6.e232381.oar