Limb-Bud and Heart (LBH) Upregulation in Cardiomyocytes under Hypoxia Promotes the Activation of Cardiac Fibroblasts via Exosome Secretion

The activation of cardiac fibroblasts (CFs) after myocardial infarction (MI) is essential for post-MI infarct healing, during which the regulation of transforming growth factor beta1 (TGF-β1) signaling is predominant. We have demonstrated that TGF-β1-mediated upregulation of LBH contributes to post-...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuling Xu (Author), Anbiao Wu (Author), Jingyang Chen (Author), Xudong Song (Author), Minsheng Chen (Author), Qicai Liu (Author)
Format: Book
Published: Hindawi Limited, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c7ad5712f4a046599dcd2f5e5aa5532a
042 |a dc 
100 1 0 |a Yuling Xu  |e author 
700 1 0 |a Anbiao Wu  |e author 
700 1 0 |a Jingyang Chen  |e author 
700 1 0 |a Xudong Song  |e author 
700 1 0 |a Minsheng Chen  |e author 
700 1 0 |a Qicai Liu  |e author 
245 0 0 |a Limb-Bud and Heart (LBH) Upregulation in Cardiomyocytes under Hypoxia Promotes the Activation of Cardiac Fibroblasts via Exosome Secretion 
260 |b Hindawi Limited,   |c 2022-01-01T00:00:00Z. 
500 |a 1466-1861 
500 |a 10.1155/2022/8939449 
520 |a The activation of cardiac fibroblasts (CFs) after myocardial infarction (MI) is essential for post-MI infarct healing, during which the regulation of transforming growth factor beta1 (TGF-β1) signaling is predominant. We have demonstrated that TGF-β1-mediated upregulation of LBH contributes to post-MI CF activation via modulating αB-crystallin (CRYAB), after being upregulated by TGF-β1. In this study, the effect of LBH-CRYAB signaling on the cardiac microenvironment via exosome communication and the corresponding mechanisms were investigated. The upregulation of LBH and CRYAB was verified in both cardiomyocytes (CMs) and CFs in hypoxic, post-MI peri-infarct tissues. CM-derived exosomes were isolated and identified, and LBH distribution was elevated in exosomes derived from LBH-upregulated CMs under hypoxia. Treatment with LBH+ exosomes promoted cellular proliferation, differentiation, and epithelial-mesenchymal transition-like processes in CFs. Additionally, in primary LBHKO CFs, western blotting showed that LBH knockout partially inhibited TGF-β1-induced CF activation, while LBH-CRYAB signaling affected TGF-β1 expression and secretion through a positive feedback loop. The administration of a Smad3 phosphorylation inhibitor to LBHKO CFs under TGF-β1 stimulation indicated that Smad3 phosphorylation partially accounted for TGF-β1-induced LBH upregulation. In conclusion, LBH upregulation in CMs in post-MI peri-infarct areas correlated with a hypoxic cardiac microenvironment and led to elevated exosomal LBH levels, promoting the activation of recipient CFs, which brings new insights into the studies and therapeutic strategies of post-MI cardiac repair. 
546 |a EN 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Mediators of Inflammation, Vol 2022 (2022) 
787 0 |n http://dx.doi.org/10.1155/2022/8939449 
787 0 |n https://doaj.org/toc/1466-1861 
856 4 1 |u https://doaj.org/article/c7ad5712f4a046599dcd2f5e5aa5532a  |z Connect to this object online.