Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies

ABSTRACTBiologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computat...

Full description

Saved in:
Bibliographic Details
Main Authors: Marissa Mock (Author), Alex W. Jacobitz (Author), Christopher James Langmead (Author), Athena Sudom (Author), Daniel Yoo (Author), Sara C. Humphreys (Author), Mai Alday (Author), Larysa Alekseychyk (Author), Nicolas Angell (Author), Vivian Bi (Author), Hannah Catterall (Author), Chen-Chun Chen (Author), Hui-Ting Chou (Author), Kip P. Conner (Author), Kevin D. Cook (Author), Ana R. Correia (Author), Andrew Dykstra (Author), Sudipa Ghimire-Rijal (Author), Kevin Graham (Author), Peter Grandsard (Author), Joon Huh (Author), John O. Hui (Author), Mani Jain (Author), Victoria Jann (Author), Lei Jia (Author), Sheree Johnstone (Author), Neelam Khanal (Author), Carl Kolvenbach (Author), Linda Narhi (Author), Rupa Padaki (Author), Emma M. Pelegri-O'Day (Author), Wei Qi (Author), Vladimir Razinkov (Author), Austin J. Rice (Author), Richard Smith (Author), Christopher Spahr (Author), Jennitte Stevens (Author), Yax Sun (Author), Veena A. Thomas (Author), Sarah van Driesche (Author), Robert Vernon (Author), Victoria Wagner (Author), Kenneth W. Walker (Author), Yangjie Wei (Author), Dwight Winters (Author), Melissa Yang (Author), Iain D. G. Campuzano (Author)
Format: Book
Published: Taylor & Francis Group, 2023-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c7e86c82a6684b888888da7d561e8891
042 |a dc 
100 1 0 |a Marissa Mock  |e author 
700 1 0 |a Alex W. Jacobitz  |e author 
700 1 0 |a Christopher James Langmead  |e author 
700 1 0 |a Athena Sudom  |e author 
700 1 0 |a Daniel Yoo  |e author 
700 1 0 |a Sara C. Humphreys  |e author 
700 1 0 |a Mai Alday  |e author 
700 1 0 |a Larysa Alekseychyk  |e author 
700 1 0 |a Nicolas Angell  |e author 
700 1 0 |a Vivian Bi  |e author 
700 1 0 |a Hannah Catterall  |e author 
700 1 0 |a Chen-Chun Chen  |e author 
700 1 0 |a Hui-Ting Chou  |e author 
700 1 0 |a Kip P. Conner  |e author 
700 1 0 |a Kevin D. Cook  |e author 
700 1 0 |a Ana R. Correia  |e author 
700 1 0 |a Andrew Dykstra  |e author 
700 1 0 |a Sudipa Ghimire-Rijal  |e author 
700 1 0 |a Kevin Graham  |e author 
700 1 0 |a Peter Grandsard  |e author 
700 1 0 |a Joon Huh  |e author 
700 1 0 |a John O. Hui  |e author 
700 1 0 |a Mani Jain  |e author 
700 1 0 |a Victoria Jann  |e author 
700 1 0 |a Lei Jia  |e author 
700 1 0 |a Sheree Johnstone  |e author 
700 1 0 |a Neelam Khanal  |e author 
700 1 0 |a Carl Kolvenbach  |e author 
700 1 0 |a Linda Narhi  |e author 
700 1 0 |a Rupa Padaki  |e author 
700 1 0 |a Emma M. Pelegri-O'Day  |e author 
700 1 0 |a Wei Qi  |e author 
700 1 0 |a Vladimir Razinkov  |e author 
700 1 0 |a Austin J. Rice  |e author 
700 1 0 |a Richard Smith  |e author 
700 1 0 |a Christopher Spahr  |e author 
700 1 0 |a Jennitte Stevens  |e author 
700 1 0 |a Yax Sun  |e author 
700 1 0 |a Veena A. Thomas  |e author 
700 1 0 |a Sarah van Driesche  |e author 
700 1 0 |a Robert Vernon  |e author 
700 1 0 |a Victoria Wagner  |e author 
700 1 0 |a Kenneth W. Walker  |e author 
700 1 0 |a Yangjie Wei  |e author 
700 1 0 |a Dwight Winters  |e author 
700 1 0 |a Melissa Yang  |e author 
700 1 0 |a Iain D. G. Campuzano  |e author 
245 0 0 |a Development of in silico models to predict viscosity and mouse clearance using a comprehensive analytical data set collected on 83 scaffold-consistent monoclonal antibodies 
260 |b Taylor & Francis Group,   |c 2023-12-01T00:00:00Z. 
500 |a 10.1080/19420862.2023.2256745 
500 |a 1942-0870 
500 |a 1942-0862 
520 |a ABSTRACTBiologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration-time curve (AUC0-672 h) in normal mouse is above or below a threshold of 3.9 × 106 h x ng/mL. 
546 |a EN 
690 |a Developability 
690 |a high throughput 
690 |a in vitro assays 
690 |a mab 
690 |a machine learning 
690 |a pharmacokinetics 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
690 |a Immunologic diseases. Allergy 
690 |a RC581-607 
655 7 |a article  |2 local 
786 0 |n mAbs, Vol 15, Iss 1 (2023) 
787 0 |n https://www.tandfonline.com/doi/10.1080/19420862.2023.2256745 
787 0 |n https://doaj.org/toc/1942-0862 
787 0 |n https://doaj.org/toc/1942-0870 
856 4 1 |u https://doaj.org/article/c7e86c82a6684b888888da7d561e8891  |z Connect to this object online.