HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome

Paraquat (PQ) poisoning can cause acute lung injury and progress to pulmonary fibrosis and eventually death without effective therapy. Mesenchymal stem cells (MSCs) and hepatocyte growth factor (HGF) have been shown to partially reverse this damage. MSCs can be derived from bone marrow (BM-MSCs), ad...

Full description

Saved in:
Bibliographic Details
Main Authors: Panpan Geng (Author), Yuning Zhang (Author), Huan Zhang (Author), Xiwen Dong (Author), Yuefeng Yang (Author), XiaoNa Zhu (Author), Chu-Tse Wu (Author), Hua Wang (Author)
Format: Book
Published: Hindawi Limited, 2021-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_c9d2783d99c548ffb51a870168c1e436
042 |a dc 
100 1 0 |a Panpan Geng  |e author 
700 1 0 |a Yuning Zhang  |e author 
700 1 0 |a Huan Zhang  |e author 
700 1 0 |a Xiwen Dong  |e author 
700 1 0 |a Yuefeng Yang  |e author 
700 1 0 |a XiaoNa Zhu  |e author 
700 1 0 |a Chu-Tse Wu  |e author 
700 1 0 |a Hua Wang  |e author 
245 0 0 |a HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome 
260 |b Hindawi Limited,   |c 2021-01-01T00:00:00Z. 
500 |a 1687-966X 
500 |a 1687-9678 
500 |a 10.1155/2021/6662831 
520 |a Paraquat (PQ) poisoning can cause acute lung injury and progress to pulmonary fibrosis and eventually death without effective therapy. Mesenchymal stem cells (MSCs) and hepatocyte growth factor (HGF) have been shown to partially reverse this damage. MSCs can be derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), dental pulp (DPSCs), and other sources. The biological characteristics of MSCs are specific to the tissue source. To develop an effective treatment for PQ poisoning, we compared the anti-inflammatory and antifibrotic effects of UC-MSCs and DPSCs and chose and modified a suitable source with HGF to investigate their therapeutic effects in vitro and in vivo. In this study, MSCs' supernatant was beneficial to the viability and proliferation of human lung epithelial cell BEAS-2B. Inflammatory and fibrosis-related cytokines were analyzed by real-time PCR. The results showed that MSCs' supernatant could suppress the expression of proinflammatory and profibrotic cytokines and increase the expression of anti-inflammatory and antifibrotic cytokines in BEAS-2B cells and human pulmonary fibroblast MRC-5. Extracellular vesicles (EVs) derived from MSCs performed more effectively than MSCs' supernatant. The effect of DPSCs was stronger than that of UC-MSCs and was further strengthened by HGF modification. PQ-poisoned mice were established, and UC-MSCs, DPSCs, and DPSCs-HGF were administered. Histopathological assessments revealed that DPSCs-HGF mitigated lung inflammation and collagen accumulation more effectively than the other treatments. DPSCs-HGF reduced lung permeability and increased the survival rate of PQ mice from 20% to 50%. Taken together, these results indicated that DPSCs can suppress inflammation and fibrosis in human lung cells better than UC-MSCs. The anti-inflammatory and antifibrotic effects were significantly enhanced by HGF modification. DPSCs-HGF ameliorated pulmonitis and pulmonary fibrosis in PQ mice, effectively improving the survival rate, which might be mediated by paracrine mechanisms. The results suggested that DPSCs-HGF transplantation was a potential therapeutic approach for PQ poisoning. 
546 |a EN 
690 |a Internal medicine 
690 |a RC31-1245 
655 7 |a article  |2 local 
786 0 |n Stem Cells International, Vol 2021 (2021) 
787 0 |n http://dx.doi.org/10.1155/2021/6662831 
787 0 |n https://doaj.org/toc/1687-966X 
787 0 |n https://doaj.org/toc/1687-9678 
856 4 1 |u https://doaj.org/article/c9d2783d99c548ffb51a870168c1e436  |z Connect to this object online.