Methods for predicting vaccine immunogenicity and reactogenicity

Subjects receiving the same vaccine often show different levels of immune responses and some may even present adverse side effects to the vaccine. Systems vaccinology can combine omics data and machine learning techniques to obtain highly predictive signatures of vaccine immunogenicity and reactogen...

Full description

Saved in:
Bibliographic Details
Main Authors: Patrícia Gonzalez-Dias (Author), Eva K. Lee (Author), Sara Sorgi (Author), Diógenes S. de Lima (Author), Alysson H. Urbanski (Author), Eduardo Lv Silveira (Author), Helder I. Nakaya (Author)
Format: Book
Published: Taylor & Francis Group, 2020-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ce3e08e582ce4ec6b5cc4e83cad84bac
042 |a dc 
100 1 0 |a Patrícia Gonzalez-Dias  |e author 
700 1 0 |a Eva K. Lee  |e author 
700 1 0 |a Sara Sorgi  |e author 
700 1 0 |a Diógenes S. de Lima  |e author 
700 1 0 |a Alysson H. Urbanski  |e author 
700 1 0 |a Eduardo Lv Silveira  |e author 
700 1 0 |a Helder I. Nakaya  |e author 
245 0 0 |a Methods for predicting vaccine immunogenicity and reactogenicity 
260 |b Taylor & Francis Group,   |c 2020-02-01T00:00:00Z. 
500 |a 2164-5515 
500 |a 2164-554X 
500 |a 10.1080/21645515.2019.1697110 
520 |a Subjects receiving the same vaccine often show different levels of immune responses and some may even present adverse side effects to the vaccine. Systems vaccinology can combine omics data and machine learning techniques to obtain highly predictive signatures of vaccine immunogenicity and reactogenicity. Currently, several machine learning methods are already available to researchers with no background in bioinformatics. Here we described the four main steps to discover markers of vaccine immunogenicity and reactogenicity: (1) Preparing the data; (2) Selecting the vaccinees and relevant genes; (3) Choosing the algorithm; (4) Blind testing your model. With the increasing number of Systems Vaccinology datasets being generated, we expect that the accuracy and robustness of signatures of vaccine reactogenicity and immunogenicity will significantly improve. 
546 |a EN 
690 |a systems vaccinology 
690 |a machine learning 
690 |a vaccine immunogenicity 
690 |a vaccine reactogenicity 
690 |a artificial intelligence 
690 |a Immunologic diseases. Allergy 
690 |a RC581-607 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Human Vaccines & Immunotherapeutics, Vol 16, Iss 2, Pp 269-276 (2020) 
787 0 |n http://dx.doi.org/10.1080/21645515.2019.1697110 
787 0 |n https://doaj.org/toc/2164-5515 
787 0 |n https://doaj.org/toc/2164-554X 
856 4 1 |u https://doaj.org/article/ce3e08e582ce4ec6b5cc4e83cad84bac  |z Connect to this object online.