Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modified, baicalin-loaded nanoparticulate system

Background Myocardial infarction (MI) is one of the most common ischemic heart diseases. It is very essential to explore new types of cardioprotective drugs delivery systems in this area. Objective The aim of the present study was to investigate the protective effect of baicalin (BA) and puerarin (P...

Full description

Saved in:
Bibliographic Details
Main Authors: Jie Wang (Author), Shouwen Zhang (Author), Lizhe Di (Author)
Format: Book
Published: Taylor & Francis Group, 2021-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_cf5fd09d80a949eb97ac709dcea715e5
042 |a dc 
100 1 0 |a Jie Wang  |e author 
700 1 0 |a Shouwen Zhang  |e author 
700 1 0 |a Lizhe Di  |e author 
245 0 0 |a Acute myocardial infarction therapy: in vitro and in vivo evaluation of atrial natriuretic peptide and triphenylphosphonium dual ligands modified, baicalin-loaded nanoparticulate system 
260 |b Taylor & Francis Group,   |c 2021-01-01T00:00:00Z. 
500 |a 1071-7544 
500 |a 1521-0464 
500 |a 10.1080/10717544.2021.1989086 
520 |a Background Myocardial infarction (MI) is one of the most common ischemic heart diseases. It is very essential to explore new types of cardioprotective drugs delivery systems in this area. Objective The aim of the present study was to investigate the protective effect of baicalin (BA) and puerarin (PU) against acute MI rat models. BA and PU co-loaded nanoparticulate system were developed to improve bioavailability of the drugs, to prolong retention time in vivo and to enhance the protective effect. Methods In the present study, ANP and TPP contained ligands were synthesized. ANP/TPP-BN-LPNs were prepared and its physico-chemical properties were evaluated. The MI therapy efficiency of ANP/TPP-BN-LPNs was assessed in rats after intravenous injection. Single ligand contained LPNs, no ligand contained LPNs, and BN solution formulations were also prepared and used for the comparison. Results ANP/TPP-BN-LPNs were uniform and spheroidal particles. The size of ANP/TPP-BN-LPNs was 98.5 ± 2.9 nm, with a zeta potential of -19.5 ± 1.9 mV. The dual ligands modified LPNs exhibited significantly improved therapeutic efficiency compared with the single ligand modified LPNs and other systems. In vivo infarct therapy studies in rats proved that ANP/TPP-BN-LPNs were a promising system for efficient delivery of cardiovascular drugs for the treatment of cardiovascular diseases. Conclusions ANP/TPP-BN-LPNs could be used as a long-circulating and heart-targeting drug delivery system. 
546 |a EN 
690 |a acute myocardial infarction 
690 |a atrial natriuretic peptide 
690 |a triphenylphosphonium 
690 |a dual ligands modified 
690 |a baicalin 
690 |a lipid-polymer hybrid nanoparticles 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Drug Delivery, Vol 28, Iss 1, Pp 2198-2204 (2021) 
787 0 |n http://dx.doi.org/10.1080/10717544.2021.1989086 
787 0 |n https://doaj.org/toc/1071-7544 
787 0 |n https://doaj.org/toc/1521-0464 
856 4 1 |u https://doaj.org/article/cf5fd09d80a949eb97ac709dcea715e5  |z Connect to this object online.