Forecasting and analyzing influenza activity in Hebei Province, China, using a CNN-LSTM hybrid model

Abstract Background Influenza, an acute infectious respiratory disease, presents a significant global health challenge. Accurate prediction of influenza activity is crucial for reducing its impact. Therefore, this study seeks to develop a hybrid Convolution Neural Network-Long Short Term Memory neur...

Full description

Saved in:
Bibliographic Details
Main Authors: Guofan Li (Author), Yan Li (Author), Guangyue Han (Author), Caixiao Jiang (Author), Minghao Geng (Author), Nana Guo (Author), Wentao Wu (Author), Shangze Liu (Author), Zhihuai Xing (Author), Xu Han (Author), Qi Li (Author)
Format: Book
Published: BMC, 2024-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_cfa7a2a4dacb47a6a3fec797f38f6f8b
042 |a dc 
100 1 0 |a Guofan Li  |e author 
700 1 0 |a Yan Li  |e author 
700 1 0 |a Guangyue Han  |e author 
700 1 0 |a Caixiao Jiang  |e author 
700 1 0 |a Minghao Geng  |e author 
700 1 0 |a Nana Guo  |e author 
700 1 0 |a Wentao Wu  |e author 
700 1 0 |a Shangze Liu  |e author 
700 1 0 |a Zhihuai Xing  |e author 
700 1 0 |a Xu Han  |e author 
700 1 0 |a Qi Li  |e author 
245 0 0 |a Forecasting and analyzing influenza activity in Hebei Province, China, using a CNN-LSTM hybrid model 
260 |b BMC,   |c 2024-08-01T00:00:00Z. 
500 |a 10.1186/s12889-024-19590-8 
500 |a 1471-2458 
520 |a Abstract Background Influenza, an acute infectious respiratory disease, presents a significant global health challenge. Accurate prediction of influenza activity is crucial for reducing its impact. Therefore, this study seeks to develop a hybrid Convolution Neural Network-Long Short Term Memory neural network (CNN-LSTM) model to forecast the percentage of influenza-like-illness (ILI) rate in Hebei Province, China. The aim is to provide more precise guidance for influenza prevention and control measures. Methods Using ILI% data from 28 national sentinel hospitals in the Hebei Province, spanning from 2010 to 2022, we employed the Python deep learning framework PyTorch to develop the CNN-LSTM model. Additionally, we utilized R and Python to develop four other models commonly used for predicting infectious diseases. After constructing the models, we employed these models to make retrospective predictions, and compared each model's prediction performance using mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and other evaluation metrics. Results Based on historical ILI% data from 28 national sentinel hospitals in Hebei Province, the Seasonal Auto-Regressive Indagate Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Convolution Neural Network (CNN), Long Short Term Memory neural network (LSTM) models were constructed. On the testing set, all models effectively predicted the ILI% trends. Subsequently, these models were used to forecast over different time spans. Across various forecasting periods, the CNN-LSTM model demonstrated the best predictive performance, followed by the XGBoost model, LSTM model, CNN model, and SARIMA model, which exhibited the least favorable performance. Conclusion The hybrid CNN-LSTM model had better prediction performances than the SARIMA model, CNN model, LSTM model, and XGBoost model. This hybrid model could provide more accurate influenza activity projections in the Hebei Province. 
546 |a EN 
690 |a Influenza 
690 |a Forecast 
690 |a Deep Learning 
690 |a Hybrid Model 
690 |a Modeling 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n BMC Public Health, Vol 24, Iss 1, Pp 1-19 (2024) 
787 0 |n https://doi.org/10.1186/s12889-024-19590-8 
787 0 |n https://doaj.org/toc/1471-2458 
856 4 1 |u https://doaj.org/article/cfa7a2a4dacb47a6a3fec797f38f6f8b  |z Connect to this object online.