Exploring Biomimetic Stiffness Modulation and Wearable Finger Haptics for Improving Myoelectric Control of Virtual Hand

The embodiment of virtual hand (VH) by the user is generally deemed to be important for virtual reality (VR) based hand rehabilitation applications, which may help to engage the user and promote motor skill relearning. In particular, it requires that the VH should produce task-dependent interaction...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
Main Authors: Hong Zeng (Author), Weijie Yu (Author), Dapeng Chen (Author), Xuhui Hu (Author), Dingguo Zhang (Author), Aiguo Song (Author)
פורמט: ספר
יצא לאור: IEEE, 2022-01-01T00:00:00Z.
נושאים:
גישה מקוונת:Connect to this object online.
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_cfdb972c2e814e2388b7aac9dcefad8c
042 |a dc 
100 1 0 |a Hong Zeng  |e author 
700 1 0 |a Weijie Yu  |e author 
700 1 0 |a Dapeng Chen  |e author 
700 1 0 |a Xuhui Hu  |e author 
700 1 0 |a Dingguo Zhang  |e author 
700 1 0 |a Aiguo Song  |e author 
245 0 0 |a Exploring Biomimetic Stiffness Modulation and Wearable Finger Haptics for Improving Myoelectric Control of Virtual Hand 
260 |b IEEE,   |c 2022-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2022.3181284 
520 |a The embodiment of virtual hand (VH) by the user is generally deemed to be important for virtual reality (VR) based hand rehabilitation applications, which may help to engage the user and promote motor skill relearning. In particular, it requires that the VH should produce task-dependent interaction behaviors from rigid to soft. While such a capability is inherent to humans via hand stiffness regulation and haptic interactions, yet it have not been successfully imitated by VH in existing studies. In this paper, we present a work which integrates biomimetic stiffness regulation and wearable finger force feedback in VR scenarios involving myoelectric control of VH. On one hand, the biomimetic stiffness modulation intuitively enables VH to imitate the stiffness profile of the user’s hand in real time. On the other hand, the wearable finger force-feedback device elicits a natural and realistic sensation of external force on the fingertip, which provides the user a proper understanding of the environment for enhancing his/her stiffness regulation. The benefits of the proposed integrated system were evaluated with eight healthy subjects that performed two tasks with opposite stiffness requirements. The achieved performance is compared with reduced versions of the integrated system, where either biomimetic impedance control or wearable force feedback is excluded. The results suggest that the proposed integrated system enables the stiffness of VH to be adaptively regulated by the user through the perception of interaction torques and vision, resulting in task-dependent behaviors from rigid to soft for VH. 
546 |a EN 
690 |a Electromyography 
690 |a virtual reality 
690 |a impedance control 
690 |a biomimetic stiffness modulation 
690 |a wearable finger haptics 
690 |a task-dependent interaction behavior 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 1601-1611 (2022) 
787 0 |n https://ieeexplore.ieee.org/document/9791298/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/cfdb972c2e814e2388b7aac9dcefad8c  |z Connect to this object online.