Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-<italic>R</italic> and Rank-1 Least Squares
Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass filtered complex-valued multi-subject fMRI data. However, some useful information may also be eliminated when usin...
সংরক্ষণ করুন:
প্রধান লেখক: | , , , , , , |
---|---|
বিন্যাস: | গ্রন্থ |
প্রকাশিত: |
IEEE,
2022-01-01T00:00:00Z.
|
বিষয়গুলি: | |
অনলাইন ব্যবহার করুন: | Connect to this object online. |
ট্যাগগুলো: |
ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | doaj_d0b4ebcb48a74ca8a45281f451d2affe | ||
042 | |a dc | ||
100 | 1 | 0 | |a Li-Dan Kuang |e author |
700 | 1 | 0 | |a Qiu-Hua Lin |e author |
700 | 1 | 0 | |a Xiao-Feng Gong |e author |
700 | 1 | 0 | |a Jianming Zhang |e author |
700 | 1 | 0 | |a Wenjun Li |e author |
700 | 1 | 0 | |a Feng Li |e author |
700 | 1 | 0 | |a Vince D. Calhoun |e author |
245 | 0 | 0 | |a Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-<italic>R</italic> and Rank-1 Least Squares |
260 | |b IEEE, |c 2022-01-01T00:00:00Z. | ||
500 | |a 1558-0210 | ||
500 | |a 10.1109/TNSRE.2022.3198679 | ||
520 | |a Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass filtered complex-valued multi-subject fMRI data. However, some useful information may also be eliminated when using a band-pass filter to suppress unwanted noise. As such, we propose an alternating rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> and rank-1 least squares optimization to relax the CPD model. Based upon this optimization method, we present a novel constrained CPD algorithm with temporal shift-invariance and spatial sparsity and orthonormality constraints. More specifically, four steps are conducted until convergence for each iteration of the proposed algorithm: 1) use rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> least-squares fit under spatial phase sparsity constraint to update shared spatial maps after phase de-ambiguity; 2) use orthonormality constraint to minimize the cross-talk between shared spatial maps; 3) update the aggregating mixing matrix using rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> least-squares fit; 4) utilize shift-invariant rank-1 least-squares on a series of rank-1 matrices reconstructed by each column of the aggregating mixing matrix to update shared time courses, and subject-specific time delays and intensities. The experimental results of simulated and actual complex-valued fMRI data show that the proposed algorithm improves the estimates for task-related sensorimotor and auditory networks, compared to pcsCPD and tensorial spatial ICA. The proposed alternating rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> and rank-1 least squares optimization is also flexible to improve CPD-related algorithm using alternating least squares. | ||
546 | |a EN | ||
690 | |a Canonical polyadic decomposition (CPD) | ||
690 | |a complex-valued fMRI data | ||
690 | |a orthonormality | ||
690 | |a shift-invariance | ||
690 | |a source phase sparsity | ||
690 | |a Medical technology | ||
690 | |a R855-855.5 | ||
690 | |a Therapeutics. Pharmacology | ||
690 | |a RM1-950 | ||
655 | 7 | |a article |2 local | |
786 | 0 | |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 2630-2640 (2022) | |
787 | 0 | |n https://ieeexplore.ieee.org/document/9856690/ | |
787 | 0 | |n https://doaj.org/toc/1558-0210 | |
856 | 4 | 1 | |u https://doaj.org/article/d0b4ebcb48a74ca8a45281f451d2affe |z Connect to this object online. |