Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-<italic>R</italic> and Rank-1 Least Squares

Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass filtered complex-valued multi-subject fMRI data. However, some useful information may also be eliminated when usin...

সম্পূর্ণ বিবরণ

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Li-Dan Kuang (Author), Qiu-Hua Lin (Author), Xiao-Feng Gong (Author), Jianming Zhang (Author), Wenjun Li (Author), Feng Li (Author), Vince D. Calhoun (Author)
বিন্যাস: গ্রন্থ
প্রকাশিত: IEEE, 2022-01-01T00:00:00Z.
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Connect to this object online.
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_d0b4ebcb48a74ca8a45281f451d2affe
042 |a dc 
100 1 0 |a Li-Dan Kuang  |e author 
700 1 0 |a Qiu-Hua Lin  |e author 
700 1 0 |a Xiao-Feng Gong  |e author 
700 1 0 |a Jianming Zhang  |e author 
700 1 0 |a Wenjun Li  |e author 
700 1 0 |a Feng Li  |e author 
700 1 0 |a Vince D. Calhoun  |e author 
245 0 0 |a Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-<italic>R</italic> and Rank-1 Least Squares 
260 |b IEEE,   |c 2022-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2022.3198679 
520 |a Complex-valued shift-invariant canonical polyadic decomposition (CPD) under a spatial phase sparsity constraint (pcsCPD) shows excellent separation performance when applied to band-pass filtered complex-valued multi-subject fMRI data. However, some useful information may also be eliminated when using a band-pass filter to suppress unwanted noise. As such, we propose an alternating rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> and rank-1 least squares optimization to relax the CPD model. Based upon this optimization method, we present a novel constrained CPD algorithm with temporal shift-invariance and spatial sparsity and orthonormality constraints. More specifically, four steps are conducted until convergence for each iteration of the proposed algorithm: 1) use rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> least-squares fit under spatial phase sparsity constraint to update shared spatial maps after phase de-ambiguity; 2) use orthonormality constraint to minimize the cross-talk between shared spatial maps; 3) update the aggregating mixing matrix using rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> least-squares fit; 4) utilize shift-invariant rank-1 least-squares on a series of rank-1 matrices reconstructed by each column of the aggregating mixing matrix to update shared time courses, and subject-specific time delays and intensities. The experimental results of simulated and actual complex-valued fMRI data show that the proposed algorithm improves the estimates for task-related sensorimotor and auditory networks, compared to pcsCPD and tensorial spatial ICA. The proposed alternating rank-<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula> and rank-1 least squares optimization is also flexible to improve CPD-related algorithm using alternating least squares. 
546 |a EN 
690 |a Canonical polyadic decomposition (CPD) 
690 |a complex-valued fMRI data 
690 |a orthonormality 
690 |a shift-invariance 
690 |a source phase sparsity 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 2630-2640 (2022) 
787 0 |n https://ieeexplore.ieee.org/document/9856690/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/d0b4ebcb48a74ca8a45281f451d2affe  |z Connect to this object online.