α-Mangostin-phytosomes as a plausible nano-vesicular approach for enhancing cytotoxic activity on SKOV-3 ovarian cancer cells

Abstract Background α-Mangostin is a major xanthone in Garcinia mangostana L. (Clusiaceae) pericarps. It has promising anti-proliferative potential in different cancer cells; however, it has poor oral bioavailability. Phytosomes are used as a novel nano-based drug delivery system. The aim of this re...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdulmohsin J. Alamoudi (Author), Shaimaa M. Badr-Eldin (Author), Osama A. A. Ahmed (Author), Serag Eldin I. Elbehairi (Author), Mohammad Y. Alfaifi (Author), Hani Z. Asfour (Author), Gamal A. Mohamed (Author), Sabrin R. M. Ibrahim (Author), Ashraf B. Abdel-Naim (Author), Hossam M. Abdallah (Author)
Format: Book
Published: SpringerOpen, 2024-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background α-Mangostin is a major xanthone in Garcinia mangostana L. (Clusiaceae) pericarps. It has promising anti-proliferative potential in different cancer cells; however, it has poor oral bioavailability. Phytosomes are used as a novel nano-based drug delivery system. The aim of this research was to enhance the anti-proliferative potency of α-mangostin by formulating it as α-mangostin-phytosome (α-M-PTMs) and assessing its impact on SKOV-3 ovarian cancer cells in comparison to pure α-mangostin. Results The size and entrapment efficiency of the proposed formulation were optimized using Box-Behnken statistics. The optimized formula was characterized using transmission electron microscope. The binding of α-mangostin to phospholipids was confirmed using Fourier-transform infrared (FTIR) spectroscopy. The optimized α-mangostin-phytosomes formula exhibited enhanced anti-proliferative activity with reference to raw α-mangostin. This was further substantiated by assessing the cell cycle phases that indicated an accumulation of SKOV-3 cells in the sub-G1 phase. Annexin-V staining revealed enhanced apoptotic activity in α-mangostin-phytosome-treated cells. This was associated with upregulation of CASP3 (Caspase-3), BAX (BCL2 Associated X, Apoptosis Regulator) and TP53 as well as down-regulation of BCL2 mRNA (B-Cell Leukemia/Lymphoma 2). Moreover, our data indicated enhanced ROS (Reactive oxygen species) production, cytochrome-C release, and disturbed MMP (mitochondrial membrane potential). Conclusion Encapsulation of α-mangostin in a phytosome nano-formula enhances its anti-proliferative effects in SKOV-3 cells via, at least in part, inducing mitochondrial apoptotic cell death.
Item Description:10.1186/s43094-024-00718-x
2314-7253