"Screening for small-for-gestational age neonates at early third trimester in a high-risk population for preeclampsia"

Abstract Background Strategies to improve prenatal detection of small-for-gestational age (SGA) neonates are necessary because its association with poorer perinatal outcome. This study evaluated, in pregnancies with first trimester high risk of early preeclampsia, the performance of a third trimeste...

Full description

Saved in:
Bibliographic Details
Main Authors: Raquel Mula (Author), Eva Meler (Author), Sandra García (Author), Gerard Albaigés (Author), Bernat Serra (Author), Elena Scazzocchio (Author), Pilar Prats (Author)
Format: Book
Published: BMC, 2020-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Strategies to improve prenatal detection of small-for-gestational age (SGA) neonates are necessary because its association with poorer perinatal outcome. This study evaluated, in pregnancies with first trimester high risk of early preeclampsia, the performance of a third trimester screening for SGA combining biophysical and biochemical markers. Methods This is a prospective longitudinal study on 378 singleton pregnancies identified at high risk of early preeclampsia according to a first trimester multiparametric algorithm with the cutoff corresponding to 15% false positive rate. This cohort included 50 cases that delivered SGA neonates with birthweight < 10th centile (13.2%) and 328 cases with normal birthweight (86.8%). At 27-30 weeks' gestation, maternal weight, blood pressure, estimated fetal weight, mean uterine artery pulsatility index and maternal biochemical markers (placental growth factor and soluble FMS-Like Tyrosine Kinase-1) were assessed. Different predictive models were created to evaluate their performance to predict SGA neonates. Results For a 15% FPR, a model that combines maternal characteristics, estimated fetal weight, mean uterine artery pulsatility index and placental growth factor achieved a detection rate (DR) of 56% with a negative predictive value of 92.2%. The area under receiver operating characteristic curve (AUC) was 0.79 (95% confidence interval (CI), 0.72-0.86). The DR of a model including maternal characteristics, estimated fetal weight and mean uterine artery pulsatility index was 54% (AUC, 0.77 (95% CI, 0.70-0.84)). The DR of a model that includes maternal characteristics and placental growth factor achieved a similar performance (DR 56%, AUC 0.75, 95% CI (0.67-0.83)). Conclusions The performance of screening for SGA neonates at early third trimester combining biophysical and biochemical markers in a high-risk population is poor. However, a high negative predictive value could help in reducing maternal anxiety, avoid iatrogenic interventions and propose a specific plan for higher risk patients.
Item Description:10.1186/s12884-020-03167-5
1471-2393