Emvirus: An embedding-based neural framework for human-virus protein-protein interactions prediction

Human-virus protein-protein interactions (PPIs) play critical roles in viral infection. For example, the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds primarily to human angiotensin-converting enzyme 2 (ACE2) protein to infect human cells. Thus, identifying and...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengfei Xie (Author), Jujuan Zhuang (Author), Geng Tian (Author), Jialiang Yang (Author)
Format: Book
Published: Elsevier, 2023-06-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_d6c7dafe9f144003ad491bcd5d0a78e7
042 |a dc 
100 1 0 |a Pengfei Xie  |e author 
700 1 0 |a Jujuan Zhuang  |e author 
700 1 0 |a Geng Tian  |e author 
700 1 0 |a Jialiang Yang  |e author 
245 0 0 |a Emvirus: An embedding-based neural framework for human-virus protein-protein interactions prediction 
260 |b Elsevier,   |c 2023-06-01T00:00:00Z. 
500 |a 2590-0536 
500 |a 10.1016/j.bsheal.2023.04.003 
520 |a Human-virus protein-protein interactions (PPIs) play critical roles in viral infection. For example, the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds primarily to human angiotensin-converting enzyme 2 (ACE2) protein to infect human cells. Thus, identifying and blocking these PPIs contribute to controlling and preventing viruses. However, wet-lab experiment-based identification of human-virus PPIs is usually expensive, labor-intensive, and time-consuming, which presents the need for computational methods. Many machine-learning methods have been proposed recently and achieved good results in predicting human-virus PPIs. However, most methods are based on protein sequence features and apply manually extracted features, such as statistical characteristics, phylogenetic profiles, and physicochemical properties. In this work, we present an embedding-based neural framework with convolutional neural network (CNN) and bi-directional long short-term memory unit (Bi-LSTM) architecture, named Emvirus, to predict human-virus PPIs (including human-SARS-CoV-2 PPIs). In addition, we conduct cross-viral experiments to explore the generalization ability of Emvirus. Compared to other feature extraction methods, Emvirus achieves better prediction accuracy. 
546 |a EN 
690 |a SARS-CoV-2 
690 |a human-virus PPI 
690 |a Word embedding 
690 |a Doc2vec 
690 |a Neural networks 
690 |a Infectious and parasitic diseases 
690 |a RC109-216 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Biosafety and Health, Vol 5, Iss 3, Pp 152-158 (2023) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2590053623000472 
787 0 |n https://doaj.org/toc/2590-0536 
856 4 1 |u https://doaj.org/article/d6c7dafe9f144003ad491bcd5d0a78e7  |z Connect to this object online.