MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives

Background: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved...

Full description

Saved in:
Bibliographic Details
Main Authors: Mette Yde Hochreuter (Author), Morten Dall (Author), Jonas T. Treebak (Author), Romain Barrès (Author)
Format: Book
Published: Elsevier, 2022-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_d7ece3f1e5964cf28abefb81c76d1cfa
042 |a dc 
100 1 0 |a Mette Yde Hochreuter  |e author 
700 1 0 |a Morten Dall  |e author 
700 1 0 |a Jonas T. Treebak  |e author 
700 1 0 |a Romain Barrès  |e author 
245 0 0 |a MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives 
260 |b Elsevier,   |c 2022-11-01T00:00:00Z. 
500 |a 2212-8778 
500 |a 10.1016/j.molmet.2022.101581 
520 |a Background: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. Scope of review: In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. Major conclusions: NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies. 
546 |a EN 
690 |a microRNA 
690 |a Non-alcoholic fatty liver disease 
690 |a Non-alcoholic steatohepatitis 
690 |a Liver fibrosis 
690 |a Cirrhosis 
690 |a Internal medicine 
690 |a RC31-1245 
655 7 |a article  |2 local 
786 0 |n Molecular Metabolism, Vol 65, Iss , Pp 101581- (2022) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2212877822001508 
787 0 |n https://doaj.org/toc/2212-8778 
856 4 1 |u https://doaj.org/article/d7ece3f1e5964cf28abefb81c76d1cfa  |z Connect to this object online.