Content and sentiment surveillance (CSI): A critical component for modeling modern epidemics

Comprehensive surveillance systems are the key to provide accurate data for effective modeling. Traditional symptom-based case surveillance has been joined with recent genomic, serologic, and environment surveillance to provide more integrated disease surveillance systems. A major gap in comprehensi...

Olles dieđut

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkkit: Shi Chen (Dahkki), Shuhua Jessica Yin (Dahkki), Yuqi Guo (Dahkki), Yaorong Ge (Dahkki), Daniel Janies (Dahkki), Michael Dulin (Dahkki), Cheryl Brown (Dahkki), Patrick Robinson (Dahkki), Dongsong Zhang (Dahkki)
Materiálatiipa: Girji
Almmustuhtton: Frontiers Media S.A., 2023-03-01T00:00:00Z.
Fáttát:
Liŋkkat:Connect to this object online.
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_da4a219c70c5432ca0ddf26c0da4a7d4
042 |a dc 
100 1 0 |a Shi Chen  |e author 
700 1 0 |a Shi Chen  |e author 
700 1 0 |a Shi Chen  |e author 
700 1 0 |a Shuhua Jessica Yin  |e author 
700 1 0 |a Yuqi Guo  |e author 
700 1 0 |a Yuqi Guo  |e author 
700 1 0 |a Yaorong Ge  |e author 
700 1 0 |a Daniel Janies  |e author 
700 1 0 |a Michael Dulin  |e author 
700 1 0 |a Michael Dulin  |e author 
700 1 0 |a Cheryl Brown  |e author 
700 1 0 |a Cheryl Brown  |e author 
700 1 0 |a Patrick Robinson  |e author 
700 1 0 |a Patrick Robinson  |e author 
700 1 0 |a Dongsong Zhang  |e author 
700 1 0 |a Dongsong Zhang  |e author 
245 0 0 |a Content and sentiment surveillance (CSI): A critical component for modeling modern epidemics 
260 |b Frontiers Media S.A.,   |c 2023-03-01T00:00:00Z. 
500 |a 2296-2565 
500 |a 10.3389/fpubh.2023.1111661 
520 |a Comprehensive surveillance systems are the key to provide accurate data for effective modeling. Traditional symptom-based case surveillance has been joined with recent genomic, serologic, and environment surveillance to provide more integrated disease surveillance systems. A major gap in comprehensive disease surveillance is to accurately monitor potential population behavioral changes in real-time. Population-wide behaviors such as compliance with various interventions and vaccination acceptance significantly influence and drive the overall epidemic dynamics in the society. Original infoveillance utilizes online query data (e.g., Google and Wikipedia search of a specific content topic such as an epidemic) and later focuses on large volumes of online discourse data about the from social media platforms and further augments epidemic modeling. It mainly uses number of posts to approximate public awareness of the disease, and further compares with observed epidemic dynamics for better projection. The current COVID-19 pandemic shows that there is an urgency to further harness the rich, detailed content and sentiment information, which can provide more accurate and granular information on public awareness and perceptions toward multiple aspects of the disease, especially various interventions. In this perspective paper, we describe a novel conceptual analytical framework of content and sentiment infoveillance (CSI) and integration with epidemic modeling. This CSI framework includes data retrieval and pre-processing; information extraction via natural language processing to identify and quantify detailed time, location, content, and sentiment information; and integrating infoveillance with common epidemic modeling techniques of both mechanistic and data-driven methods. CSI complements and significantly enhances current epidemic models for more informed decision by integrating behavioral aspects from detailed, instantaneous infoveillance from massive social media data. 
546 |a EN 
690 |a infoveillance 
690 |a modeling 
690 |a behavior 
690 |a parameterization 
690 |a mechanism 
690 |a data-driven (DD) 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Frontiers in Public Health, Vol 11 (2023) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fpubh.2023.1111661/full 
787 0 |n https://doaj.org/toc/2296-2565 
856 4 1 |u https://doaj.org/article/da4a219c70c5432ca0ddf26c0da4a7d4  |z Connect to this object online.