ADME prediction with KNIME: A retrospective contribution to the second "Solubility Challenge"

Computational models for predicting aqueous solubility from the molecular structure represent a promising strategy from the perspective of drug design and discovery. Since the first "Solubility Challenge", these initiatives have marked the state-of-art of the modelling algorithms used to p...

Full description

Saved in:
Bibliographic Details
Main Authors: Gabriela Falcón-Cano (Author), Christophe Molina (Author), Miguel Angel Cabrera-Pérez (Author)
Format: Book
Published: International Association of Physical Chemists (IAPC), 2021-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_dac3faedf3de4e20be05df75c74b77f7
042 |a dc 
100 1 0 |a Gabriela Falcón-Cano  |e author 
700 1 0 |a Christophe Molina  |e author 
700 1 0 |a Miguel Angel Cabrera-Pérez  |e author 
245 0 0 |a ADME prediction with KNIME: A retrospective contribution to the second "Solubility Challenge" 
260 |b International Association of Physical Chemists (IAPC),   |c 2021-07-01T00:00:00Z. 
500 |a 10.5599/admet.979 
500 |a 1848-7718 
520 |a Computational models for predicting aqueous solubility from the molecular structure represent a promising strategy from the perspective of drug design and discovery. Since the first "Solubility Challenge", these initiatives have marked the state-of-art of the modelling algorithms used to predict drug solubility. In this regard, the quality of the input experimental data and its influence on model performance has been frequently discussed. In our previous study, we developed a computational model for aqueous solubility based on recursive random forest approaches. The aim of the current commentary is to analyse the performance of this already trained predictive model on the molecules of the second "Solubility Challenge". Even when our training set has inconsistencies related to the pH, solid form and temperature conditions of the solubility measurements, the model was able to predict the two sets from the second "Solubility Challenge" with statistics comparable to those of the top ranked models. Finally, we provided a KNIME automated workflow to predict the aqueous solubility of new drug candidates, during the early stages of drug discovery and development, for ensuring the applicability and reproducibility of our model. ©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n ADMET and DMPK (2021) 
787 0 |n https://pub.iapchem.org/ojs/index.php/admet/article/view/979 
787 0 |n https://doaj.org/toc/1848-7718 
856 4 1 |u https://doaj.org/article/dac3faedf3de4e20be05df75c74b77f7  |z Connect to this object online.