ADME prediction with KNIME: A retrospective contribution to the second "Solubility Challenge"
Computational models for predicting aqueous solubility from the molecular structure represent a promising strategy from the perspective of drug design and discovery. Since the first "Solubility Challenge", these initiatives have marked the state-of-art of the modelling algorithms used to p...
Enregistré dans:
Auteurs principaux: | Gabriela Falcón-Cano (Auteur), Christophe Molina (Auteur), Miguel Angel Cabrera-Pérez (Auteur) |
---|---|
Format: | Livre |
Publié: |
International Association of Physical Chemists (IAPC),
2021-07-01T00:00:00Z.
|
Sujets: | |
Accès en ligne: | Connect to this object online. |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches
par: Gabriela Falcón-Cano, et autres
Publié: (2020) -
Reliable Prediction of Caco-2 Permeability by Supervised Recursive Machine Learning Approaches
par: Gabriela Falcón-Cano, et autres
Publié: (2022) -
KNIME-based Analysis of Off-Target Effect of Drugs Related to The Molecular 2D Fingerprint
par: Nihayatul Karimah, et autres
Publié: (2021) -
ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives
par: Adriana Isvoran, et autres
Publié: (2017) -
In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities
par: Ying Han, et autres
Publié: (2019)