Using Akaike information criterion and minimum mean square error mode in compensating for ultrasonographic errors for estimation of fetal weight by new operators

Objectives: The accuracy of ultrasound (US) measurements is operator dependent. In order to decrease the operator-dependent errors in estimated fetal weight (EFW), a model selection analysis was undertaken to select significant compensation weighting factors on ultrasonographic parameters to support...

Full description

Saved in:
Bibliographic Details
Main Authors: Yueh-Chin Cheng (Author), Yu Hsien Chiu (Author), Hsien-Chang Wang (Author), Fong-Ming Chang (Author), Kao-Chi Chung (Author), Chiung-Hsin Chang (Author), Kuo-Sheng Cheng (Author)
Format: Book
Published: Elsevier, 2013-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_db0ae7d25b5847a4b7f5ea414014f84d
042 |a dc 
100 1 0 |a Yueh-Chin Cheng  |e author 
700 1 0 |a Yu Hsien Chiu  |e author 
700 1 0 |a Hsien-Chang Wang  |e author 
700 1 0 |a Fong-Ming Chang  |e author 
700 1 0 |a Kao-Chi Chung  |e author 
700 1 0 |a Chiung-Hsin Chang  |e author 
700 1 0 |a Kuo-Sheng Cheng  |e author 
245 0 0 |a Using Akaike information criterion and minimum mean square error mode in compensating for ultrasonographic errors for estimation of fetal weight by new operators 
260 |b Elsevier,   |c 2013-03-01T00:00:00Z. 
500 |a 1028-4559 
500 |a 10.1016/j.tjog.2013.01.008 
520 |a Objectives: The accuracy of ultrasound (US) measurements is operator dependent. In order to decrease the operator-dependent errors in estimated fetal weight (EFW), a model selection analysis was undertaken to select significant compensation weighting factors on ultrasonographic parameters to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation. Materials and Methods: In total, 2127 singletons were examined by prenatal US within 3 days before delivery for ANN development, and another 100 cases were selected from new operators for evaluation. First, correlation analysis was used to analyze the differences between the prenatal and postnatal parameters. Second, Akaike information criterion (AIC) was used to determine the number of database partition and optimal weightings for compensating the input parameters of the ANN model. Finally, minimum mean squared error (MMSE) mode was utilized to determine the optimal EFW. Results: EFW of the proposed compensation model using AIC and MMSE showed mean absolute percent error of 5.1 ± 3.1% and mean absolute error of 158.9 ± 96.2 g. When comparing the accuracy of EFW, our model using AIC and MMSE was superior to those conventional EFW formulas (all p < 0.05). Conclusion: We proved that performing the parameter compensation (by AIC) and model compensations (by MMSE) for the ANN model can improve EFW accuracy. Our AIC-MMSE model of EFW will contribute to the improvement of accuracy when adding new US datasets measured by new operators. 
546 |a EN 
690 |a Akaike information criterion 
690 |a artificial neural network 
690 |a estimated fetal weight 
690 |a minimum mean squared error 
690 |a ultrasonography 
690 |a Gynecology and obstetrics 
690 |a RG1-991 
655 7 |a article  |2 local 
786 0 |n Taiwanese Journal of Obstetrics & Gynecology, Vol 52, Iss 1, Pp 46-52 (2013) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1028455913000090 
787 0 |n https://doaj.org/toc/1028-4559 
856 4 1 |u https://doaj.org/article/db0ae7d25b5847a4b7f5ea414014f84d  |z Connect to this object online.