Parametric Time‐to‐Event Model for Acute Exacerbations in Idiopathic Pulmonary Fibrosis

We describe a parametric time‐to‐event model for idiopathic pulmonary fibrosis (IPF) exacerbations and identify predictors of exacerbation risk using data obtained for the tyrosine‐kinase inhibitor nintedanib in two phase III studies (INPULSIS‐1/2). Parametric survival analysis was performed on time...

Full description

Saved in:
Bibliographic Details
Main Authors: Fei Tang (Author), Benjamin Weber (Author), Susanne Stowasser (Author), Julia Korell (Author)
Format: Book
Published: Wiley, 2020-02-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe a parametric time‐to‐event model for idiopathic pulmonary fibrosis (IPF) exacerbations and identify predictors of exacerbation risk using data obtained for the tyrosine‐kinase inhibitor nintedanib in two phase III studies (INPULSIS‐1/2). Parametric survival analysis was performed on time to first exacerbation (censoring on day 372), with univariate analysis to select statistically significant covariates (P = 0.05). Multivariate covariate models were developed using stepwise covariate modeling with forward inclusion (P = 0.05) and backward elimination (P = 0.01). Sixty‐three first exacerbation events were reported across 1,061 subjects in the INPULSIS studies. Baseline and decline of forced vital capacity (FVC)/percent‐predicted FVC (%pFVC), supplemental oxygen use, baseline CO diffusing capacity and age were statistically significant in the univariate analysis. The final covariate model included decline in FVC to week 52, baseline %pFVC, supplemental oxygen use, and age. The developed model may be used to identify patients at high risk of IPF exacerbations and accelerate development of novel treatments.
Item Description:2163-8306
10.1002/psp4.12485