Drug target, class level, and PathFX pathway information share utility for machine learning prediction of common drug-induced side effects
Introduction: Development of drugs often fails due to toxicity and intolerable side effects. Recent advancements in the scientific community have rendered it possible to leverage machine learning techniques to predict individual side effects with domain knowledge features (i.e., drug classification)...
Kaydedildi:
Asıl Yazarlar: | Han Jie Liu (Yazar), Jennifer L. Wilson (Yazar) |
---|---|
Materyal Türü: | Kitap |
Baskı/Yayın Bilgisi: |
Frontiers Media S.A.,
2023-11-01T00:00:00Z.
|
Konular: | |
Online Erişim: | Connect to this object online. |
Etiketler: |
Etiketle
Etiket eklenmemiş, İlk siz ekleyin!
|
Benzer Materyaller
-
The Death-Traps of FX-31
Yazar:: Wright, Sewell Peaslee, 1897-1970 -
WEB INTERAKTIF PANDUAN REPARASITELEVISI BERWARNA BERBASIS CMS JOOMLA DAN JAVA FX
Yazar:: Wibowo, Cahyo
Baskı/Yayın Bilgisi: (2011) -
Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review
Yazar:: Esmaeel Toni, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Symmetric drug-related intertriginous and flexural exanthema due to itraconazole: An uncommon side effect of a commonly used drug
Yazar:: Madhuchhanda Mohapatra, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Path4Drug: Data Science Workflow for Identification of Tissue-Specific Biological Pathways Modulated by Toxic Drugs
Yazar:: Barbara Füzi, ve diğerleri
Baskı/Yayın Bilgisi: (2021)