Formulation and Optimization of Metronidazole and <i>Lactobacillus</i> spp. Layered Suppositories via a Three-Variable, Five-Level Central Composite Design for the Management of Bacterial Vaginosis
Bacterial vaginosis, a polymicrobial clinical syndrome characterized by a shift in healthy vaginal microbiota due to bacterial colonization, is characterized by high recurrence rates after conventional treatment with an antimicrobial agent. This has necessitated the need to develop a formulation tha...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2022-10-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bacterial vaginosis, a polymicrobial clinical syndrome characterized by a shift in healthy vaginal microbiota due to bacterial colonization, is characterized by high recurrence rates after conventional treatment with an antimicrobial agent. This has necessitated the need to develop a formulation that has the potential to ensure <i>Lactobacilli</i> viability and bacterial clearance. This study seeks to develop and optimize a layered suppository using a five-level central composite design to ensure optimized metronidazole release and lactic acid viability. Layered suppositories were formulated using the fusion method using polyethylene glycol blend 1500/4000 and Ovucire<sup>®</sup> as suppository bases. <i>Lactobacillus fermentum</i> was incorporated in the molten mass before molding the solid body suppositories into the cavity of hollow-type suppositories and sealing the molten excipients. Artificial neural network model predictions for product optimization showed high predictive capacity, closely resembling experimental observations. The highest disintegration time recorded was 12.76 ± 0.37 min, with the optimized formulations showing lower times of 5.93 ± 0.98 min and an average weight of 1.17 ± 0.07 g. Histopathological observations determined high compatibility of suppositories with vaginal cells with no distortion or wearing of the vagina epithelium. This optimized formulation provides a safe and promising alternative to conventional suppositories in the treatment and prevention of the recurrence of bacterial vaginosis. |
---|---|
Item Description: | 10.3390/pharmaceutics14112337 1999-4923 |