Can diverse population characteristics be leveraged in a machine learning pipeline to predict resource intensive healthcare utilization among hospital service areas?
Abstract Background Super-utilizers represent approximately 5% of the population in the United States (U.S.) and yet they are responsible for over 50% of healthcare expenditures. Using characteristics of hospital service areas (HSAs) to predict utilization of resource intensive healthcare (RIHC) may...
Αποθηκεύτηκε σε:
Κύριοι συγγραφείς: | , , , , |
---|---|
Μορφή: | Βιβλίο |
Έκδοση: |
BMC,
2022-06-01T00:00:00Z.
|
Θέματα: | |
Διαθέσιμο Online: | Connect to this object online. |
Ετικέτες: |
Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!
|
καταχωρήστε σχόλιο πρώτοι!