MASMDDI: multi-layer adaptive soft-mask graph neural network for drug-drug interaction prediction
Accurately predicting Drug-Drug Interaction (DDI) is a critical and challenging aspect of the drug discovery process, particularly in preventing adverse reactions in patients undergoing combination therapy. However, current DDI prediction methods often overlook the interaction information between ch...
Guardado en:
Autores principales: | Junpeng Lin (Autor), Binsheng Hong (Autor), Zhongqi Cai (Autor), Ping Lu (Autor), Kaibiao Lin (Autor) |
---|---|
Formato: | Libro |
Publicado: |
Frontiers Media S.A.,
2024-05-01T00:00:00Z.
|
Materias: | |
Acceso en línea: | Connect to this object online. |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Integrative Heterogeneous Graph Neural Network-Based Method for Multi-Labeled Drug Repurposing
por: Shaghayegh Sadeghi, et al.
Publicado: (2022) -
DDI-MuG: Multi-aspect graphs for drug-drug interaction extraction
por: Jie Yang, et al.
Publicado: (2023) -
Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis
por: Rufan Yao, et al.
Publicado: (2024) -
Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration
por: Guangsheng Wu, et al.
Publicado: (2017) -
Regional-Asymmetric Adaptive Graph Convolutional Neural Network for Diagnosis of Autism in Children With Resting-State EEG
por: Wanyu Hu, et al.
Publicado: (2024)