Drug-drug interaction extraction based on multimodal feature fusion by Transformer and BiGRU

Understanding drug-drug interactions (DDIs) plays a vital role in the fields of drug disease treatment, drug development, preventing medical error, and controlling health care-costs. Extracting potential from biomedical corpora is a major complement of existing DDIs. Most existing DDI extraction (DD...

Full description

Saved in:
Bibliographic Details
Main Authors: Changqing Yu (Author), Shanwen Zhang (Author), Xuqi Wang (Author), Tailong Shi (Author), Chen Jiang (Author), Sizhe Liang (Author), Guanghao Ma (Author)
Format: Book
Published: Frontiers Media S.A., 2024-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_e133c8dc96ed434f9e936e23fcaece94
042 |a dc 
100 1 0 |a Changqing Yu  |e author 
700 1 0 |a Shanwen Zhang  |e author 
700 1 0 |a Xuqi Wang  |e author 
700 1 0 |a Tailong Shi  |e author 
700 1 0 |a Chen Jiang  |e author 
700 1 0 |a Sizhe Liang  |e author 
700 1 0 |a Guanghao Ma  |e author 
245 0 0 |a Drug-drug interaction extraction based on multimodal feature fusion by Transformer and BiGRU 
260 |b Frontiers Media S.A.,   |c 2024-10-01T00:00:00Z. 
500 |a 2674-0338 
500 |a 10.3389/fddsv.2024.1460672 
520 |a Understanding drug-drug interactions (DDIs) plays a vital role in the fields of drug disease treatment, drug development, preventing medical error, and controlling health care-costs. Extracting potential from biomedical corpora is a major complement of existing DDIs. Most existing DDI extraction (DDIE) methods do not consider the graph and structure of drug molecules, which can improve the performance of DDIE. Considering the different advantages of bi-directional gated recurrent units (BiGRU), Transformer, and attention mechanisms in DDIE tasks, a multimodal feature fusion model combining BiGRU and Transformer (BiGGT) is here constructed for DDIE. In BiGGT, the vector embeddings of medical corpora, drug molecule topology graphs, and structure are conducted by Word2vec, Mol2vec, and GCN, respectively. BiGRU and multi-head self-attention (MHSA) are integrated into Transformer to extract the local-global contextual DDIE features, which is important for DDIE. The extensive experiment results on the DDIExtraction 2013 shared task dataset show that the BiGGT-based DDIE method outperforms state-of-the-art DDIE approaches with a precision of 78.22%. BiGGT expands the application of multimodal deep learning in the field of multimodal DDIE. 
546 |a EN 
690 |a drug-drug interaction 
690 |a DDI extraction 
690 |a graph convolutional networks 
690 |a transformer 
690 |a multimodal feature fusion 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Drug Discovery, Vol 4 (2024) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fddsv.2024.1460672/full 
787 0 |n https://doaj.org/toc/2674-0338 
856 4 1 |u https://doaj.org/article/e133c8dc96ed434f9e936e23fcaece94  |z Connect to this object online.