The Protective Effects of a Dietary Carotenoid, Astaxanthin, Against Light-Induced Retinal Damage

Dietary carotenoids exhibit various biological activities, including antioxidative activity. In particular, astaxanthin, a type of carotenoid, is well known as a powerful antioxidant. We investigated whether astaxanthin would protect against light-induced retinal damage. In an in vivo study, ddY mal...

Full description

Saved in:
Bibliographic Details
Main Authors: Tomohiro Otsuka (Author), Masamitsu Shimazawa (Author), Tomohiro Nakanishi (Author), Yuta Ohno (Author), Yuki Inoue (Author), Kazuhiro Tsuruma (Author), Takashi Ishibashi (Author), Hideaki Hara (Author)
Format: Book
Published: Elsevier, 2013-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dietary carotenoids exhibit various biological activities, including antioxidative activity. In particular, astaxanthin, a type of carotenoid, is well known as a powerful antioxidant. We investigated whether astaxanthin would protect against light-induced retinal damage. In an in vivo study, ddY male mice were exposed to white light at 8,000 lux for 3 h to induce retinal damage. Five days after light exposure, retinal damage was evaluated by measuring electroretinogram (ERG) amplitude and outer nuclear layer (ONL) thickness. Furthermore, expression of apoptotic cells, 8-hydroxy-deoxyguanosine (8-OHdG), was measured. In an in vitro study, retinal damage was induced by white light exposure at 2,500 lux for 24 h, and propidium iodide (PI)-positive cells was measured and intracellular reactive oxygen species (ROS) activity was examined. Astaxanthin at 100 mg/kg inhibited the retinal dysfunction in terms of ERG and ONL loss and reduced the expression of apoptotic and 8-OHdG-positive cells induced by light exposure. Furthermore, astaxanthin protected against increases of PI-positive cells and intracellular reactive oxygen species (ROS) activity in 661W cells. These findings suggest that astaxanthin has protective effects against light-induced retinal damage via the mechanism of its antioxidative effect. Keywords:: astaxanthin, photoreceptor, oxidative stress, age-related macular degeneration, retinitis pigmentosa
Item Description:1347-8613
10.1254/jphs.13066FP