A deep‐learning workflow to predict upper tract urothelial carcinoma protein‐based subtypes from H&E slides supporting the prioritization of patients for molecular testing

Abstract Upper tract urothelial carcinoma (UTUC) is a rare and aggressive, yet understudied, urothelial carcinoma (UC). The more frequent UC of the bladder comprises several molecular subtypes, associated with different targeted therapies and overlapping with protein‐based subtypes. However, if and...

Full description

Saved in:
Bibliographic Details
Main Authors: Miriam Angeloni (Author), Thomas vanDoeveren (Author), Sebastian Lindner (Author), Patrick Volland (Author), Jorina Schmelmer (Author), Sebastian Foersch (Author), Christian Matek (Author), Robert Stoehr (Author), Carol I Geppert (Author), Hendrik Heers (Author), Sven Wach (Author), Helge Taubert (Author), Danijel Sikic (Author), Bernd Wullich (Author), Geert JLH vanLeenders (Author), Vasily Zaburdaev (Author), Markus Eckstein (Author), Arndt Hartmann (Author), Joost L Boormans (Author), Fulvia Ferrazzi (Author), Veronika Bahlinger (Author)
Format: Book
Published: Wiley, 2024-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ea49233d91ae4f1c9eec6b27ab16c36c
042 |a dc 
100 1 0 |a Miriam Angeloni  |e author 
700 1 0 |a Thomas vanDoeveren  |e author 
700 1 0 |a Sebastian Lindner  |e author 
700 1 0 |a Patrick Volland  |e author 
700 1 0 |a Jorina Schmelmer  |e author 
700 1 0 |a Sebastian Foersch  |e author 
700 1 0 |a Christian Matek  |e author 
700 1 0 |a Robert Stoehr  |e author 
700 1 0 |a Carol I Geppert  |e author 
700 1 0 |a Hendrik Heers  |e author 
700 1 0 |a Sven Wach  |e author 
700 1 0 |a Helge Taubert  |e author 
700 1 0 |a Danijel Sikic  |e author 
700 1 0 |a Bernd Wullich  |e author 
700 1 0 |a Geert JLH vanLeenders  |e author 
700 1 0 |a Vasily Zaburdaev  |e author 
700 1 0 |a Markus Eckstein  |e author 
700 1 0 |a Arndt Hartmann  |e author 
700 1 0 |a Joost L Boormans  |e author 
700 1 0 |a Fulvia Ferrazzi  |e author 
700 1 0 |a Veronika Bahlinger  |e author 
245 0 0 |a A deep‐learning workflow to predict upper tract urothelial carcinoma protein‐based subtypes from H&E slides supporting the prioritization of patients for molecular testing 
260 |b Wiley,   |c 2024-03-01T00:00:00Z. 
500 |a 2056-4538 
500 |a 10.1002/2056-4538.12369 
520 |a Abstract Upper tract urothelial carcinoma (UTUC) is a rare and aggressive, yet understudied, urothelial carcinoma (UC). The more frequent UC of the bladder comprises several molecular subtypes, associated with different targeted therapies and overlapping with protein‐based subtypes. However, if and how these findings extend to UTUC remains unclear. Artificial intelligence‐based approaches could help elucidate UTUC's biology and extend access to targeted treatments to a wider patient audience. Here, UTUC protein‐based subtypes were identified, and a deep‐learning (DL) workflow was developed to predict them directly from routine histopathological H&E slides. Protein‐based subtypes in a retrospective cohort of 163 invasive tumors were assigned by hierarchical clustering of the immunohistochemical expression of three luminal (FOXA1, GATA3, and CK20) and three basal (CD44, CK5, and CK14) markers. Cluster analysis identified distinctive luminal (N = 80) and basal (N = 42) subtypes. The luminal subtype mostly included pushing, papillary tumors, whereas the basal subtype diffusely infiltrating, non‐papillary tumors. DL model building relied on a transfer‐learning approach by fine‐tuning a pre‐trained ResNet50. Classification performance was measured via three‐fold repeated cross‐validation. A mean area under the receiver operating characteristic curve of 0.83 (95% CI: 0.67-0.99), 0.8 (95% CI: 0.62-0.99), and 0.81 (95% CI: 0.65-0.96) was reached in the three repetitions. High‐confidence DL‐based predicted subtypes showed significant associations (p < 0.001) with morphological features, i.e. tumor type, histological subtypes, and infiltration type. Furthermore, a significant association was found with programmed cell death ligand 1 (PD‐L1) combined positive score (p < 0.001) and FGFR3 mutational status (p = 0.002), with high‐confidence basal predictions containing a higher proportion of PD‐L1 positive samples and high‐confidence luminal predictions a higher proportion of FGFR3‐mutated samples. Testing of the DL model on an independent cohort highlighted the importance to accommodate histological subtypes. Taken together, our DL workflow can predict protein‐based UTUC subtypes, associated with the presence of targetable alterations, directly from H&E slides. 
546 |a EN 
690 |a deep‐learning 
690 |a digital pathology 
690 |a immunohistochemistry 
690 |a protein‐based subtypes 
690 |a targeted therapy 
690 |a upper tract urothelial carcinoma 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n The Journal of Pathology: Clinical Research, Vol 10, Iss 2, Pp n/a-n/a (2024) 
787 0 |n https://doi.org/10.1002/2056-4538.12369 
787 0 |n https://doaj.org/toc/2056-4538 
856 4 1 |u https://doaj.org/article/ea49233d91ae4f1c9eec6b27ab16c36c  |z Connect to this object online.