Retrospective analysis of COVID-19 clinical and laboratory data: Constructing a multivariable model across different comorbidities

Background: The clinical pathogenesis of COVID-19 necessitates a comprehensive and homogeneous study to understand the disease mechanisms. Identifying clinical symptoms and laboratory parameters as key predictors can guide prognosis and inform effective treatment strategies. This study analyzed como...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahdieh Shokrollahi Barough (Author), Mohammad Darzi (Author), Masoud Yunesian (Author), Danesh Amini Panah (Author), Yekta Ghane (Author), Sam Mottahedan (Author), Sohrab Sakinehpour (Author), Tahereh Kowsarirad (Author), Zahra Hosseini-Farjam (Author), Mohammad Reza Amirzargar (Author), Samaneh Dehghani (Author), Fahimeh Shahriyary (Author), Mohammad Mahdi Kabiri (Author), Marzieh Nojomi (Author), Neda Saraygord-Afshari (Author), Seyedeh Ghazal Mostofi (Author), Zeynab Yassin (Author), Nazanin Mojtabavi (Author)
Format: Book
Published: Elsevier, 2024-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_eb656246b5d24cf5b8d780dc09a58bc6
042 |a dc 
100 1 0 |a Mahdieh Shokrollahi Barough  |e author 
700 1 0 |a Mohammad Darzi  |e author 
700 1 0 |a Masoud Yunesian  |e author 
700 1 0 |a Danesh Amini Panah  |e author 
700 1 0 |a Yekta Ghane  |e author 
700 1 0 |a Sam Mottahedan  |e author 
700 1 0 |a Sohrab Sakinehpour  |e author 
700 1 0 |a Tahereh Kowsarirad  |e author 
700 1 0 |a Zahra Hosseini-Farjam  |e author 
700 1 0 |a Mohammad Reza Amirzargar  |e author 
700 1 0 |a Samaneh Dehghani  |e author 
700 1 0 |a Fahimeh Shahriyary  |e author 
700 1 0 |a Mohammad Mahdi Kabiri  |e author 
700 1 0 |a Marzieh Nojomi  |e author 
700 1 0 |a Neda Saraygord-Afshari  |e author 
700 1 0 |a Seyedeh Ghazal Mostofi  |e author 
700 1 0 |a Zeynab Yassin  |e author 
700 1 0 |a Nazanin Mojtabavi  |e author 
245 0 0 |a Retrospective analysis of COVID-19 clinical and laboratory data: Constructing a multivariable model across different comorbidities 
260 |b Elsevier,   |c 2024-12-01T00:00:00Z. 
500 |a 1876-0341 
500 |a 10.1016/j.jiph.2024.102566 
520 |a Background: The clinical pathogenesis of COVID-19 necessitates a comprehensive and homogeneous study to understand the disease mechanisms. Identifying clinical symptoms and laboratory parameters as key predictors can guide prognosis and inform effective treatment strategies. This study analyzed comorbidities and laboratory metrics to predict COVID-19 mortality using a homogeneous model. Method: A retrospective cohort study was conducted on 7500 COVID-19 patients admitted to Rasoul Akram Hospital between 2022 and 2022. Clinical and laboratory data, along with comorbidity information, were collected and analyzed using advanced coding, data alignment, and regression analyses. Machine learning algorithms were employed to identify relevant features and calculate predictive probability scores. Results: The frequency and mortality rates of COVID-19 among males (19.3 %) were higher than those among females (17 %) (p = 0.01, OR = 0.85, 95 % CI = 0.76-0.96). Cancer (p < 0.05, OR = 1.9, 95 % CI = 1.48-2.4) and Alzheimer's (p < 0.05, OR = 2.36, 95 % CI = 1.89-2.9) were the two most common comorbidities associated with long-term hospitalization (LTH). Kidney disease (KD) was identified as the most lethal comorbidity (45 % of KD patients) (OR = 5.6, 95 % CI = 5.05-6.04, p < 0.001). Age > 55 was the most predictive parameter for mortality (p < 0.001, OR = 6.5, 95 % CI = 1.03-1.04), and the CT scan score showed no predictive value for death (p > 0.05). WBC, Cr, CRP, ALP, and VBG-HCO3 were the most significant critical data associated with death prediction across all comorbidities (p < 0.05). Conclusion: COVID-19 is particularly lethal for elderly adults; thus, age plays a crucial role in disease prognosis. Regarding death prediction, various comorbidities rank differently, with KD having a significant impact on mortality outcomes. 
546 |a EN 
690 |a COVID-19 
690 |a Laboratory data 
690 |a Comorbidity 
690 |a Feature selection 
690 |a Machine learning 
690 |a Infectious and parasitic diseases 
690 |a RC109-216 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Journal of Infection and Public Health, Vol 17, Iss 12, Pp 102566- (2024) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1876034124003009 
787 0 |n https://doaj.org/toc/1876-0341 
856 4 1 |u https://doaj.org/article/eb656246b5d24cf5b8d780dc09a58bc6  |z Connect to this object online.