Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on...

Full description

Saved in:
Bibliographic Details
Main Authors: Angel Cruz-Roa (Author), Gloria Díaz (Author), Eduardo Romero (Author), Fabio A González (Author)
Format: Book
Published: Elsevier, 2011-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_eb8a87e8e35c4ed5a23493b42d49fbe0
042 |a dc 
100 1 0 |a Angel Cruz-Roa  |e author 
700 1 0 |a Gloria Díaz  |e author 
700 1 0 |a Eduardo Romero  |e author 
700 1 0 |a Fabio A González  |e author 
245 0 0 |a Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization 
260 |b Elsevier,   |c 2011-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 2153-3539 
500 |a 10.4103/2153-3539.92031 
520 |a Histopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively. 
546 |a EN 
690 |a Basal Cell Carcinoma 
690 |a Histopathology Images 
690 |a Automatic Annotation 
690 |a Visual Latent Semantic Analysis 
690 |a Non-negative Matrix Factorization 
690 |a Bag of Features 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 2, Iss 2, Pp 4-4 (2011) 
787 0 |n http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2011;volume=2;issue=2;spage=4;epage=4;aulast=Cruz-Roa 
787 0 |n https://doaj.org/toc/2153-3539 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/eb8a87e8e35c4ed5a23493b42d49fbe0  |z Connect to this object online.