FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database

IntroductionLinking free-text addresses to unique identifiers in a structural address database [the Ordnance Survey unique property reference number (UPRN) in the United Kingdom (UK)] is a necessary step for downstream geospatial analysis in many digital health systems, e.g., for identification of c...

Full description

Saved in:
Bibliographic Details
Main Authors: Huayu Zhang (Author), Arlene Casey (Author), Imane Guellil (Author), Víctor Suárez-Paniagua (Author), Clare MacRae (Author), Charis Marwick (Author), Honghan Wu (Author), Bruce Guthrie (Author), Beatrice Alex (Author)
Format: Book
Published: Frontiers Media S.A., 2023-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ec156d78d3dd4bb4a92ddb4f86703ffe
042 |a dc 
100 1 0 |a Huayu Zhang  |e author 
700 1 0 |a Arlene Casey  |e author 
700 1 0 |a Imane Guellil  |e author 
700 1 0 |a Víctor Suárez-Paniagua  |e author 
700 1 0 |a Clare MacRae  |e author 
700 1 0 |a Charis Marwick  |e author 
700 1 0 |a Honghan Wu  |e author 
700 1 0 |a Honghan Wu  |e author 
700 1 0 |a Bruce Guthrie  |e author 
700 1 0 |a Beatrice Alex  |e author 
700 1 0 |a Beatrice Alex  |e author 
700 1 0 |a Beatrice Alex  |e author 
245 0 0 |a FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database 
260 |b Frontiers Media S.A.,   |c 2023-11-01T00:00:00Z. 
500 |a 2673-253X 
500 |a 10.3389/fdgth.2023.1186208 
520 |a IntroductionLinking free-text addresses to unique identifiers in a structural address database [the Ordnance Survey unique property reference number (UPRN) in the United Kingdom (UK)] is a necessary step for downstream geospatial analysis in many digital health systems, e.g., for identification of care home residents, understanding housing transitions in later life, and informing decision making on geographical health and social care resource distribution. However, there is a lack of open-source tools for this task with performance validated in a test data set.MethodsIn this article, we propose a generalisable solution (A Framework for Linking free-text Addresses to Ordnance Survey UPRN database, FLAP) based on a machine learning-based matching classifier coupled with a fuzzy aligning algorithm for feature generation with better performance than existing tools. The framework is implemented in Python as an Open Source tool (available at Link). We tested the framework in a real-world scenario of linking individual's (n=771,588) addresses recorded as free text in the Community Health Index (CHI) of National Health Service (NHS) Tayside and NHS Fife to the Unique Property Reference Number database (UPRN DB).ResultsWe achieved an adjusted matching accuracy of 0.992 in a test data set randomly sampled (n=3,876) from NHS Tayside and NHS Fife CHI addresses. FLAP showed robustness against input variations including typographical errors, alternative formats, and partially incorrect information. It has also improved usability compared to existing solutions allowing the use of a customised threshold of matching confidence and selection of top n candidate records. The use of machine learning also provides better adaptability of the tool to new data and enables continuous improvement.DiscussionIn conclusion, we have developed a framework, FLAP, for linking free-text UK addresses to the UPRN DB with good performance and usability in a real-world task. 
546 |a EN 
690 |a free-text address 
690 |a Unique Property Reference Number 
690 |a UPRN 
690 |a record linkage 
690 |a machine learning 
690 |a Medicine 
690 |a R 
690 |a Public aspects of medicine 
690 |a RA1-1270 
690 |a Electronic computers. Computer science 
690 |a QA75.5-76.95 
655 7 |a article  |2 local 
786 0 |n Frontiers in Digital Health, Vol 5 (2023) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fdgth.2023.1186208/full 
787 0 |n https://doaj.org/toc/2673-253X 
856 4 1 |u https://doaj.org/article/ec156d78d3dd4bb4a92ddb4f86703ffe  |z Connect to this object online.