Development and technical validation of an artificial intelligence model for quantitative analysis of histopathologic features of eosinophilic esophagitis

Background: In an attempt to provide quantitative, reproducible, and standardized analyses in cases of eosinophilic esophagitis (EoE), we have developed an artificial intelligence (AI) digital pathology model for the evaluation of histologic features in the EoE/esophageal eosinophilia spectrum. Here...

Full description

Saved in:
Bibliographic Details
Main Authors: Luisa Ricaurte Archila (Author), Lindsey Smith (Author), Hanna-Kaisa Sihvo (Author), Thomas Westerling-Bui (Author), Ville Koponen (Author), Donnchadh M. O'Sullivan (Author), Maria Camila Cardenas Fernandez (Author), Erin E. Alexander (Author), Yaohong Wang (Author), Priyadharshini Sivasubramaniam (Author), Ameya Patil (Author), Puanani E. Hopson (Author), Imad Absah (Author), Karthik Ravi (Author), Taofic Mounajjed (Author), Rish Pai (Author), Catherine Hagen (Author), Christopher Hartley (Author), Rondell P. Graham (Author), Roger K. Moreira (Author)
Format: Book
Published: Elsevier, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ec49ec2bc5bb4122a79bdbd5f91442d0
042 |a dc 
100 1 0 |a Luisa Ricaurte Archila  |e author 
700 1 0 |a Lindsey Smith  |e author 
700 1 0 |a Hanna-Kaisa Sihvo  |e author 
700 1 0 |a Thomas Westerling-Bui  |e author 
700 1 0 |a Ville Koponen  |e author 
700 1 0 |a Donnchadh M. O'Sullivan  |e author 
700 1 0 |a Maria Camila Cardenas Fernandez  |e author 
700 1 0 |a Erin E. Alexander  |e author 
700 1 0 |a Yaohong Wang  |e author 
700 1 0 |a Priyadharshini Sivasubramaniam  |e author 
700 1 0 |a Ameya Patil  |e author 
700 1 0 |a Puanani E. Hopson  |e author 
700 1 0 |a Imad Absah  |e author 
700 1 0 |a Karthik Ravi  |e author 
700 1 0 |a Taofic Mounajjed  |e author 
700 1 0 |a Rish Pai  |e author 
700 1 0 |a Catherine Hagen  |e author 
700 1 0 |a Christopher Hartley  |e author 
700 1 0 |a Rondell P. Graham  |e author 
700 1 0 |a Roger K. Moreira  |e author 
245 0 0 |a Development and technical validation of an artificial intelligence model for quantitative analysis of histopathologic features of eosinophilic esophagitis 
260 |b Elsevier,   |c 2022-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 10.1016/j.jpi.2022.100144 
520 |a Background: In an attempt to provide quantitative, reproducible, and standardized analyses in cases of eosinophilic esophagitis (EoE), we have developed an artificial intelligence (AI) digital pathology model for the evaluation of histologic features in the EoE/esophageal eosinophilia spectrum. Here, we describe the development and technical validation of this novel AI tool. Methods: A total of 10 726 objects and 56.2 mm2 of semantic segmentation areas were annotated on whole-slide images, utilizing a cloud-based, deep learning artificial intelligence platform (Aiforia Technologies, Helsinki, Finland). Our training set consisted of 40 carefully selected digitized esophageal biopsy slides which contained the full spectrum of changes typically seen in the setting of esophageal eosinophilia, ranging from normal mucosa to severe abnormalities with regard to each specific features included in our model. A subset of cases was reserved as independent "test sets" in order to assess the validity of the AI model outside the training set. Five specialized experienced gastrointestinal pathologists scored each feature blindly and independently of each other and of AI model results. Results: The performance of the AI model for all cell type features was similar/non-inferior to that of our group of GI pathologists (F1-scores: 94.5-94.8 for AI vs human and 92.6-96.0 for human vs human). Segmentation area features were rated for accuracy using the following scale: 1. "perfect or nearly perfect" (95%-100%, no significant errors), 2. "very good" (80%-95%, only minor errors), 3. "good" (70%-80%, significant errors but still captures the feature well), 4. "insufficient" (less than 70%, significant errors compromising feature recognition). Rating scores for tissue (1.01), spongiosis (1.15), basal layer (1.05), surface layer (1.04), lamina propria (1.15), and collagen (1.11) were in the "very good" to "perfect or nearly perfect" range, while degranulation (2.23) was rated between "good" and "very good". Conclusion: Our newly developed AI-based tool showed an excellent performance (non-inferior to a group of experienced GI pathologists) for the recognition of various histologic features in the EoE/esophageal mucosal eosinophilia spectrum. This tool represents an important step in creating an accurate and reproducible method for semi-automated quantitative analysis to be used in the evaluation of esophageal biopsies in this clinical context. 
546 |a EN 
690 |a Artificial intelligence 
690 |a Digital pathology 
690 |a Eosinophilic esophagitis 
690 |a Deep learning 
690 |a EoE 
690 |a Eosinophils 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 13, Iss , Pp 100144- (2022) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2153353922007386 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/ec49ec2bc5bb4122a79bdbd5f91442d0  |z Connect to this object online.