Exploring inter-ethnic and inter-patient variability and optimal dosing of osimertinib: a physiologically based pharmacokinetic modeling approach

Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng Liang (Author), Yimei Zhang (Author), Qian Xue (Author), Na Yao (Author)
Format: Book
Published: Frontiers Media S.A., 2024-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ecea3c77d13a4b59a4c43247a6633c64
042 |a dc 
100 1 0 |a Feng Liang  |e author 
700 1 0 |a Yimei Zhang  |e author 
700 1 0 |a Qian Xue  |e author 
700 1 0 |a Na Yao  |e author 
245 0 0 |a Exploring inter-ethnic and inter-patient variability and optimal dosing of osimertinib: a physiologically based pharmacokinetic modeling approach 
260 |b Frontiers Media S.A.,   |c 2024-03-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2024.1363259 
520 |a Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was also utilized to investigate inter-ethnic and inter-patient differences in OSI pharmacokinetics (PK) and determine optimal dosing regimens.Methods: Population PBPK models of OSI for healthy and disease populations were developed using physicochemical and biochemical properties of OSI and physiological parameters of different groups. And then the PBPK models were validated using the multiple clinical PK and drug-drug interaction (DDI) study data.Results: The model demonstrated good consistency with the observed data, with most of prediction-to-observation ratios of 0.8-1.25 for AUC, Cmax, and Ctrough. The PBPK model revealed that plasma exposure of OSI was approximately 2-fold higher in patients compared to healthy individuals, and higher exposure observed in Caucasians compared to other ethnic groups. This was primarily attributed to a lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key factors influencing PK and EGFRm+ inhibition differences included genetic polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup), albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK variability was most influenced by CYP3A4 variants, fup, and albumin level. The PBPK simulations indicated that the optimal dosing regimen for patients across the three populations of European, Japanese, and Chinese ancestry was OSI 80 mg once daily (OD) to achieve the desired range of plasma Ctrough (328-677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary EGFRm+ inhibition (>80%).Conclusion: In conclusion, this study's PBPK simulations highlighted potential ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between Caucasian, Japanese, and Chinese populations, while also providing insights into optimal dosing regimens of OSI. 
546 |a EN 
690 |a osimertinib 
690 |a PBPK model 
690 |a ethnic differences 
690 |a inter-patients variability 
690 |a optimal dosing regimens 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 15 (2024) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fphar.2024.1363259/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/ecea3c77d13a4b59a4c43247a6633c64  |z Connect to this object online.