Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) Knockout mice

Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neuri...

Full description

Saved in:
Bibliographic Details
Main Authors: Yoshihisa eKoyama (Author), Tsuyoshi eHattori (Author), Tomoki eNishida (Author), Osamu eHori (Author), Masaya eTohyama (Author)
Format: Book
Published: Frontiers Media S.A., 2015-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ed26d59f018d4c8d82a73bcdb0ff3ad5
042 |a dc 
100 1 0 |a Yoshihisa eKoyama  |e author 
700 1 0 |a Tsuyoshi eHattori  |e author 
700 1 0 |a Tsuyoshi eHattori  |e author 
700 1 0 |a Tomoki eNishida  |e author 
700 1 0 |a Osamu eHori  |e author 
700 1 0 |a Masaya eTohyama  |e author 
700 1 0 |a Masaya eTohyama  |e author 
245 0 0 |a Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) Knockout mice 
260 |b Frontiers Media S.A.,   |c 2015-04-01T00:00:00Z. 
500 |a 1662-5129 
500 |a 10.3389/fnana.2015.00052 
520 |a Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO) mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs) in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons. 
546 |a EN 
690 |a Dendrites 
690 |a Spine 
690 |a pyramidal neuron 
690 |a synapse 
690 |a DISC1 
690 |a PSD 
690 |a Neurosciences. Biological psychiatry. Neuropsychiatry 
690 |a RC321-571 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Frontiers in Neuroanatomy, Vol 9 (2015) 
787 0 |n http://journal.frontiersin.org/Journal/10.3389/fnana.2015.00052/full 
787 0 |n https://doaj.org/toc/1662-5129 
856 4 1 |u https://doaj.org/article/ed26d59f018d4c8d82a73bcdb0ff3ad5  |z Connect to this object online.