A Comparison of Green, Delta, and Monte Carlo Methods to Select an Optimal Approach for Calculating the 95% Confidence Interval of the Population-attributable Fraction: Guidance for Epidemiological Research

Objectives: This study aimed to compare the Delta, Greenland, and Monte Carlo methods for estimating 95% confidence intervals (CIs) of the population-attributable fraction (PAF). The objectives were to identify the optimal method and to determine the influence of primary parameters on PAF calculatio...

Cur síos iomlán

Sábháilte in:
Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Sangjun Lee (Údar), Sungji Moon (Údar), Kyungsik Kim (Údar), Soseul Sung (Údar), Youjin Hong (Údar), Woojin Lim (Údar), Sue K. Park (Údar)
Formáid: LEABHAR
Foilsithe / Cruthaithe: Korean Society for Preventive Medicine, 2024-09-01T00:00:00Z.
Ábhair:
Rochtain ar líne:Connect to this object online.
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_edbf3ea0100e4c5e9605ae8ed6d67ece
042 |a dc 
100 1 0 |a Sangjun Lee  |e author 
700 1 0 |a Sungji Moon  |e author 
700 1 0 |a Kyungsik Kim  |e author 
700 1 0 |a Soseul Sung  |e author 
700 1 0 |a Youjin Hong  |e author 
700 1 0 |a Woojin Lim  |e author 
700 1 0 |a Sue K. Park  |e author 
245 0 0 |a A Comparison of Green, Delta, and Monte Carlo Methods to Select an Optimal Approach for Calculating the 95% Confidence Interval of the Population-attributable Fraction: Guidance for Epidemiological Research 
260 |b Korean Society for Preventive Medicine,   |c 2024-09-01T00:00:00Z. 
500 |a 1975-8375 
500 |a 2233-4521 
500 |a 10.3961/jpmph.24.272 
520 |a Objectives: This study aimed to compare the Delta, Greenland, and Monte Carlo methods for estimating 95% confidence intervals (CIs) of the population-attributable fraction (PAF). The objectives were to identify the optimal method and to determine the influence of primary parameters on PAF calculations. Methods: A dataset was simulated using hypothetical values for primary parameters (population, relative risk [RR], prevalence, and variance of the beta estimator [V( β^)]) involved in PAF calculations. Three methods (Delta, Greenland, and Monte Carlo) were used to estimate the 95% CIs of the PAFs. Perturbation analysis was performed to assess the sensitivity of the PAF to changes in these parameters. An R Shiny application, the "GDM-PAF CI Explorer," was developed to facilitate the analysis and visualization of these computations. Results: No significant differences were observed among the 3 methods when both the RR and p-value were low. The Delta method performed well under conditions of low prevalence or minimal RR, while Greenland's method was effective in scenarios with high prevalence. Meanwhile, the Monte Carlo method calculated 95% CIs of PAFs that were stable overall, though it required intensive computational resources. In a novel approach that utilized perturbation for sensitivity analysis, V( β^)] was identified as the most influential parameter in the estimation of CIs. Conclusions: This study emphasizes the necessity of a careful approach for comparing 95% CI estimation methods for PAFs and selecting the method that best suits the context. It provides practical guidelines to researchers to increase the reliability and accuracy of epidemiological studies. 
546 |a EN 
690 |a population 
690 |a epidemiology 
690 |a methodology 
690 |a Medicine 
690 |a R 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Journal of Preventive Medicine and Public Health, Vol 57, Iss 5, Pp 499-507 (2024) 
787 0 |n http://jpmph.org/upload/pdf/jpmph-24-272.pdf 
787 0 |n https://doaj.org/toc/1975-8375 
787 0 |n https://doaj.org/toc/2233-4521 
856 4 1 |u https://doaj.org/article/edbf3ea0100e4c5e9605ae8ed6d67ece  |z Connect to this object online.