Effects of Melatonin Supplementation during Pregnancy on Reproductive Performance, Maternal-Placental-Fetal Redox Status, and Placental Mitochondrial Function in a Sow Model
Melatonin (MT) is a bio-antioxidant that has been widely used to prevent pregnancy complications, such as pre-eclampsia and IUGR during gestation. This experiment evaluated the impacts of dietary MT supplementation during pregnancy on reproductive performance, maternal-placental-fetal redox status,...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2021-11-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Melatonin (MT) is a bio-antioxidant that has been widely used to prevent pregnancy complications, such as pre-eclampsia and IUGR during gestation. This experiment evaluated the impacts of dietary MT supplementation during pregnancy on reproductive performance, maternal-placental-fetal redox status, placental inflammatory response, and mitochondrial function, and sought a possible underlying mechanism in the placenta. Sixteen fifth parity sows were divided into two groups and fed each day of the gestation period either a control diet or a diet that was the same but for 36 mg of MT. The results showed that dietary supplementation with MT increased placental weight, while the percentage of piglets born with weight < 900 g decreased. Meanwhile, serum and placental MT levels, maternal-placental-fetal redox status, and placental inflammatory response were increased by MT. In addition, dietary MT markedly increased the mRNA levels of nutrient transporters and antioxidant-related genes involved in the Nrf2/ARE pathway in the placenta. Furthermore, dietary MT significantly increased ATP and NAD<sup>+</sup> levels, relative mtDNA content, and the protein expression of Sirt1 in the placenta. These results suggested that MT supplementation during gestation could improve maternal-placental-fetal redox status and reproductive performance by ameliorating placental antioxidant status, inflammatory response, and mitochondrial dysfunction. |
---|---|
Item Description: | 10.3390/antiox10121867 2076-3921 |