Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia

Stunting is a global public health issue. We sought to train and evaluate machine learning (ML) classification algorithms on the Zambia Demographic Health Survey (ZDHS) dataset to predict stunting among children under the age of five in Zambia. We applied Logistic regression (LR), Random Forest (RF)...

Full description

Saved in:
Bibliographic Details
Main Authors: Obvious Nchimunya Chilyabanyama (Author), Roma Chilengi (Author), Michelo Simuyandi (Author), Caroline C. Chisenga (Author), Masuzyo Chirwa (Author), Kalongo Hamusonde (Author), Rakesh Kumar Saroj (Author), Najeeha Talat Iqbal (Author), Innocent Ngaruye (Author), Samuel Bosomprah (Author)
Format: Book
Published: MDPI AG, 2022-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ef7b66cb40954702ac6ba74d0bc23352
042 |a dc 
100 1 0 |a Obvious Nchimunya Chilyabanyama  |e author 
700 1 0 |a Roma Chilengi  |e author 
700 1 0 |a Michelo Simuyandi  |e author 
700 1 0 |a Caroline C. Chisenga  |e author 
700 1 0 |a Masuzyo Chirwa  |e author 
700 1 0 |a Kalongo Hamusonde  |e author 
700 1 0 |a Rakesh Kumar Saroj  |e author 
700 1 0 |a Najeeha Talat Iqbal  |e author 
700 1 0 |a Innocent Ngaruye  |e author 
700 1 0 |a Samuel Bosomprah  |e author 
245 0 0 |a Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia 
260 |b MDPI AG,   |c 2022-07-01T00:00:00Z. 
500 |a 10.3390/children9071082 
500 |a 2227-9067 
520 |a Stunting is a global public health issue. We sought to train and evaluate machine learning (ML) classification algorithms on the Zambia Demographic Health Survey (ZDHS) dataset to predict stunting among children under the age of five in Zambia. We applied Logistic regression (LR), Random Forest (RF), SV classification (SVC), XG Boost (XgB) and Naïve Bayes (NB) algorithms to predict the probability of stunting among children under five years of age, on the 2018 ZDHS dataset. We calibrated predicted probabilities and plotted the calibration curves to compare model performance. We computed accuracy, recall, precision and F1 for each machine learning algorithm. About 2327 (34.2%) children were stunted. Thirteen of fifty-eight features were selected for inclusion in the model using random forest. Calibrating the predicted probabilities improved the performance of machine learning algorithms when evaluated using calibration curves. RF was the most accurate algorithm, with an accuracy score of 79% in the testing and 61.6% in the training data while Naïve Bayesian was the worst performing algorithm for predicting stunting among children under five in Zambia using the 2018 ZDHS dataset. ML models aids quick diagnosis of stunting and the timely development of interventions aimed at preventing stunting. 
546 |a EN 
690 |a stunting 
690 |a machine learning 
690 |a random forest 
690 |a Naïve Bayesian 
690 |a ZDHS 
690 |a Pediatrics 
690 |a RJ1-570 
655 7 |a article  |2 local 
786 0 |n Children, Vol 9, Iss 7, p 1082 (2022) 
787 0 |n https://www.mdpi.com/2227-9067/9/7/1082 
787 0 |n https://doaj.org/toc/2227-9067 
856 4 1 |u https://doaj.org/article/ef7b66cb40954702ac6ba74d0bc23352  |z Connect to this object online.