Rationally designed Campylobacter jejuni Cas9 enables efficient gene activation and base editing
Compact and adaptable CRISPR-Cas systems enable genome engineering applications in various contexts via high-efficiency delivery. The adeno-associated virus (AAV) is a widely used delivery system. One of the most compact type II-C Cas9 orthologs-CjCas9, derived from Campylobacter jejuni, is particul...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2024-12-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compact and adaptable CRISPR-Cas systems enable genome engineering applications in various contexts via high-efficiency delivery. The adeno-associated virus (AAV) is a widely used delivery system. One of the most compact type II-C Cas9 orthologs-CjCas9, derived from Campylobacter jejuni, is particularly appealing for AAV delivery. However, the editing efficiency of CjCas9 limits its applications. In this study, we used structure-guided protein engineering to improve the editing efficiency of CjCas9. Subsequently, we developed a miniature transcriptional activator (LDE-CjCas9-VPR) and base editors engineered from CjCas9 (LDE-CjABE and LDE-CjCBE). LDE-CjABE effectively induced genome editing in human and mouse cells. Through AAV delivery, LDE-CjABE enhanced the on-target editing efficiency, and off-target editing was not detected in the mouse retina. Therefore, the compact size and high editing efficiency of LDE-CjCas9 broadens the target scope of transcription activation and base editing toolsets for therapeutic applications. |
---|---|
Item Description: | 2162-2531 10.1016/j.omtn.2024.102366 |